Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density

被引:294
作者
Lynam, Joan G. [1 ]
Kumar, Narendra [1 ]
Wong, Mark J. [2 ]
机构
[1] Louisiana Tech Univ, Dept Chem Engn, POB 10348,600 Dan Reneau Dr, Ruston, LA 71272 USA
[2] Univ Nevada, Dept Chem & Mat Engn, 1664 N Virginia St,MS0170, Reno, NV 89557 USA
基金
美国食品与农业研究所;
关键词
Loblolly pine; Biomass; TGA; Enzymatic hydrolysis; Glucose yield; IONIC LIQUID; LACTIC-ACID; BIOMASS; TEMPERATURE; PRETREATMENT; MIXTURES; AGRICULTURE; BIOFUELS;
D O I
10.1016/j.biortech.2017.04.079
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
An environmentally-friendly method to separate cellulose and hemicelluloses from lignin in recalcitrant biomass for subsequent conversion is desirable to reduce greenhouse gas generation. Easily-prepared, deep eutectic solvents (DESs) have low volatility, wide liquid range, non-flammability, nontoxicity, biocompatibility, and biodegradability. This study shows the DESs (formic acid: choline chloride, lactic acid: choline chloride, acetic acid: choline chloride, lactic acid: betaine, and lactic acid: proline) to be capable of preferentially dissolving lignin at 60 degrees C. Thermogravimetric analysis show DES to be stable at typical biomass processing temperatures. Pretreating loblolly pine in one DES increased glucose yield after enzymatic hydrolysis to more than seven times that of raw or glycerol-pretreated pine. The density of DES-pretreated biomass was found to be 40% higher than the untreated pine's density. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:684 / 689
页数:6
相关论文
共 31 条
[1]  
Bindoff NL, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P867
[2]   Impact of Ionic Liquid Pretreatment Conditions on Cellulose Crystalline Structure Using 1-Ethyl-3-methylimidazolium Acetate [J].
Cheng, Gang ;
Varanasi, Patanjali ;
Arora, Rohit ;
Stavila, Vitalie ;
Simmons, Blake A. ;
Kent, Michael S. ;
Singh, Seema .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (33) :10049-10054
[3]   Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation [J].
da Costa Lopes, Andre M. ;
Joao, Karen G. ;
Rubik, Djonatam F. ;
Bogel-Lukasik, Ewa ;
Duarte, Luis C. ;
Andreaus, Juergen ;
Bogel-Lukasik, Rafal .
BIORESOURCE TECHNOLOGY, 2013, 142 :198-208
[4]   Comparison of a low transition temperature mixture (LTTM) formed by lactic acid and choline chloride with choline lactate ionic liquid and the choline chloride salt: physical properties and vapour-liquid equilibria of mixtures containing water and ethanol [J].
Francisco, Maria ;
Gonzalez, Agustin S. B. ;
Lago Garcia de Dios, Sara ;
Weggemans, Wilko ;
Kroon, Maaike C. .
RSC ADVANCES, 2013, 3 (45) :23553-23561
[5]   New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing [J].
Francisco, Maria ;
van den Bruinhorst, Adriaan ;
Kroon, Maaike C. .
GREEN CHEMISTRY, 2012, 14 (08) :2153-2157
[6]   Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy's sugar process (CLE Sugar) [J].
Gao, Johnway ;
Anderson, Dwight ;
Levie, Benjamin .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[7]  
Goering H.K., 1970, Agriculture Handbook, V379
[8]   Toward Advanced Ionic Liquids. Polar, Enzyme-friendly Solvents for Biocatalysis [J].
Gorke, Johnathan ;
Srienc, Friedrich ;
Kazlauskas, Romas .
BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2010, 15 (01) :40-53
[9]   A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas [J].
Howarth, Robert W. .
ENERGY SCIENCE & ENGINEERING, 2014, 2 (02) :47-60
[10]   Improved two-step hydrothermal process for acetic acid production from carbohydrate biomass [J].
Huo, Zhibao ;
Fang, Yan ;
Yao, Guodong ;
Zeng, Xu ;
Ren, Dezhang ;
Jin, Fangming .
JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (02) :207-212