Fabrication of MoSe2 nanoribbons via an unusual morphological phase transition

被引:84
作者
Chen, Yuxuan [1 ]
Cui, Ping [2 ]
Ren, Xibiao [3 ]
Zhang, Chendong [1 ,2 ]
Jin, Chuanhong [3 ]
Zhang, Zhenyu [2 ]
Shih, Chih-Kang [1 ]
机构
[1] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[2] Univ Sci & Technol China, Int Ctr Quantum Design Funct Mat ICQD, Hefei Natl Lab Phys Sci, Microscale & Synerget Innovat Ctr Quantum Informa, Hefei 230026, Anhui, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
GRAPHENE NANORIBBONS; VALLEY POLARIZATION; MONOLAYER MOS2; METAL; ZIGZAG; CARBON; EDGES; GAP; STABILITY; SURFACE;
D O I
10.1038/ncomms15135
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transition metal dichalcogenides (TMDs) are a family of van der Waals layered materials exhibiting unique electronic, optical, magnetic and transport properties. Their technological potentials hinge critically on the ability to achieve controlled fabrication of desirable nanostructures, such as nanoribbons and nanodots. To date, nanodots/nanoislands have been regularly observed, while controlled fabrication of TMD nanoribbons remains challenging. Here we report a bottom-up fabrication of MoSe2 nanoribbons using molecular beam epitaxy, via an unexpected temperature-induced morphological phase transition from the nanodot to nanoribbon regime. Such nanoribbons are of zigzag nature, characterized by distinct chemical and electronic properties along the edges. The phase space for nanoribbon growth is narrowly defined by proper Se:Mo ratios, as corroborated experimentally using different Se fluxes, and supported theoretically using first-principles calculations that establish the crucial role of the morphological reconstruction of the bare Mo-terminated edge. The growth mechanism revealed should be applicable to other TMD systems.
引用
收藏
页数:9
相关论文
共 52 条
  • [41] Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography
    Tapaszto, Levente
    Dobrik, Gergely
    Lambin, Philippe
    Biro, Laszlo P.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (07) : 397 - 401
  • [42] Ugeda MM, 2014, NAT MATER, V13, P1091, DOI [10.1038/NMAT4061, 10.1038/nmat4061]
  • [43] Xia FN, 2014, NAT PHOTONICS, V8, P899, DOI [10.1038/nphoton.2010.271, 10.1038/nphoton.2014.271]
  • [44] Xu XD, 2014, NAT PHYS, V10, P343, DOI [10.1038/NPHYS2942, 10.1038/nphys2942]
  • [45] Zeng HL, 2012, NAT NANOTECHNOL, V7, P490, DOI [10.1038/nnano.2012.95, 10.1038/NNANO.2012.95]
  • [46] Visualizing band offsets and edge states in bilayer-monolayer transition metal dichalcogenides lateral heterojunction
    Zhang, Chendong
    Chen, Yuxuan
    Huang, Jing-Kai
    Wu, Xianxin
    Li, Lain-Jong
    Yao, Wang
    Tersoff, Jerry
    Shih, Chih-Kang
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [47] Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2
    Zhang, Chendong
    Chen, Yuxuan
    Johnson, Amber
    Li, Ming-Yang
    Li, Lain-Jong
    Mende, Patrick C.
    Feenstra, Randall M.
    Shih, Chih-Kang
    [J]. NANO LETTERS, 2015, 15 (10) : 6494 - 6500
  • [48] Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending
    Zhang, Chendong
    Johnson, Amber
    Hsu, Chang-Lung
    Li, Lain-Jong
    Shih, Chih-Kang
    [J]. NANO LETTERS, 2014, 14 (05) : 2443 - 2447
  • [49] Experimental observation of the quantum Hall effect and Berry's phase in graphene
    Zhang, YB
    Tan, YW
    Stormer, HL
    Kim, P
    [J]. NATURE, 2005, 438 (7065) : 201 - 204
  • [50] Zhang Y, 2014, NAT NANOTECHNOL, V9, P111, DOI [10.1038/nnano.2013.277, 10.1038/NNANO.2013.277]