On the connection between macdonald polynomials and Demazure characters

被引:54
作者
Sanderson, YB [1 ]
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08901 USA
关键词
affine Lie algebras; Macdonald polynomials; Demazure character;
D O I
10.1023/A:1008786420650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the specialization of nonsymmetric Macdonald polynomials at t = 0 are, up to multiplication by a simple factor, characters of Demazure modules for <(sl(n))over cap>. This connection furnishes Lie-theoretic proofs of the nonnegativity and monotonicity of Kostka polynomials.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 15 条
[1]  
BUTLER LM, 1994, MEMOIRS AMS, V112
[2]   DOUBLE AFFINE HECKE ALGEBRAS AND MACDONALDS CONJECTURES [J].
CHEREDNIK, I .
ANNALS OF MATHEMATICS, 1995, 141 (01) :191-216
[3]   ON CERTAIN GRADED SN-MODULES AND THE Q-KOSTKA POLYNOMIALS [J].
GARSIA, AM ;
PROCESI, C .
ADVANCES IN MATHEMATICS, 1992, 94 (01) :82-138
[4]  
KIRILLOV AN, 1994, HEPTH9408113
[5]  
Knop F, 1997, J REINE ANGEW MATH, V482, P177
[6]   DEMAZURE CHARACTER FORMULA IN ARBITRARY KAC-MOODY SETTING [J].
KUMAR, S .
INVENTIONES MATHEMATICAE, 1987, 89 (02) :395-423
[7]  
KUNIBA A, 1997, 9707004 QALG
[8]  
LASCOUX A, 1978, CR ACAD SCI A MATH, V286, P323
[9]   GREEN POLYNOMIALS AND SINGULARITIES OF UNIPOTENT CLASSES [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1981, 42 (02) :169-178
[10]  
MacDonald IG, 1996, ASTERISQUE, P189