SnO2-Doped ZnO/Reduced Graphene Oxide Nanocomposites: Synthesis, Characterization, and Improved Anticancer Activity via Oxidative Stress Pathway

被引:109
作者
Ahamed, Maqusood [1 ]
Akhtar, Mohd Javed [1 ]
Khan, M. A. Majeed [1 ]
Alhadlaq, Hisham A. [1 ,2 ]
机构
[1] King Saud Univ, King Abdullah Inst Nanotechnol, Riyadh 11451, Saudi Arabia
[2] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
关键词
ZnO nanocomposites; improved anticancer activity; better selectivity; reactive oxygen species; caspase-3; breast cancer; ZNO NANOPARTICLES; COLORIMETRIC ASSAY; CANCER; TOXICITY; APOPTOSIS; CELLS; ANTIBACTERIAL;
D O I
10.2147/IJN.S285392
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Background: Therapeutic selectivity and drug resistance are critical issues in cancer therapy. Currently, zinc oxide nanoparticles (ZnO NPs) hold considerable promise to tackle this problem due to their tunable physicochemical properties. This work was designed to prepare SnO2-doped ZnO NPs/reduced graphene oxide nanocomposites (SnO2-ZnO/rGO NCs) with enhanced anticancer activity and better biocompatibility than those of pure ZnO NPs. Materials and Methods: Pure ZnO NPs, SnO2-doped ZnO (SnO2-ZnO) NPs, and SnO2-ZnO/rGO NCs were prepared via a facile hydrothermal method. Prepared samples were characterized by field emission transmission electron microscopy (FETEM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectrometer, and dynamic light scattering (DLS) techniques. Selectivity and anticancer activity of prepared samples were assessed in human breast cancer (MCF-7) and human normal breast epithelial (MCF10A) cells. Possible mechanisms of anticancer activity of prepared samples were explored through oxidative stress pathway. Results: XRD spectra of SnO2-ZnO/rGO NCs confirmed the formation of single-phase of hexagonal wurtzite ZnO. High resolution TEM and SEM mapping showed homogenous distribution of SnO2 and rGO in ZnO NPs with high quality lattice fringes without any distortion. Band gap energy of SnO2-ZnO/rGO NCs was lower compared to SnO2-ZnO NPs and pure ZnO NPs. The SnO2-ZnO/rGO NCs exhibited significantly higher anticancer activity against MCF-7 cancer cells than those of SnO2-ZnO NPs and ZnO NPs. The SnO2-ZnO/rGO NCs induced apoptotic response through the upregulation of caspase-3 gene and depletion of mitochondrial membrane potential. Mechanistic study indicated that SnO2-ZnO/rGO NCs kill cancer cells through oxidative stress pathway. Moreover, biocompatibility of SnO2-ZnO/ rGO NCs was also higher against normal breast epithelial (MCF10A cells) in comparison to SnO2-ZnO NPs and ZnO NPs. Conclusion: SnO2-ZnO/rGO NCs showed enhanced anticancer activity and better biocompatibility than SnO2-ZnO NPs and pure ZnO NPs. This work suggested a new approach to improve the selectivity and anticancer activity of ZnO NPs. Studies on antitumor activity of SnO2-ZnO/rGO NCs in animal models are further warranted.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 61 条
[1]   Influence of silica nanoparticles on cadmium-induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells [J].
Ahamed, Maqusood ;
Akhtar, Mohd Javed ;
Alhadlaq, Hisham A. .
ENVIRONMENTAL TOXICOLOGY, 2020, 35 (05) :599-608
[2]   Evaluation of the Cytotoxicity and Oxidative Stress Response of CeO2-RGO Nanocomposites in Human Lung Epithelial A549 Cells [J].
Ahamed, Maqusood ;
Akhtar, Mohd Javed ;
Khan, M. A. Majeed ;
Alaizeri, ZabnAllah M. ;
Alhadlaq, Hisham A. .
NANOMATERIALS, 2019, 9 (12)
[3]   Oxidative stress mediated cytotoxicity of tin (IV) oxide (SnO2) nanoparticles in human breast cancer (MCF-7) cells [J].
Ahamed, Maqusood ;
Akhtar, Mohd Javed ;
Khan, M. A. Majeed ;
Alhadlaq, Hisham A. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 172 :152-160
[4]   Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells [J].
Ahamed, Maqusood ;
Khan, M. A. Majeed ;
Akhtar, Mohd Javed ;
Alhadlaq, Hisham A. ;
Alshamsan, Aws .
SCIENTIFIC REPORTS, 2017, 7
[5]   Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway [J].
Ahamed, Maqusood ;
Alhadlaq, Hisham A. ;
Khan, M. A. Majeed ;
Akhtar, Mohd Javed .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (01)
[6]   ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress [J].
Ahamed, Maqusood ;
Akhtar, Mohd Javed ;
Raja, Mohan ;
Ahmad, Iqbal ;
Siddiqui, Mohammad Kaleem Javed ;
AlSalhi, Mohamad S. ;
Alrokayan, Salman A. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2011, 7 (06) :904-913
[7]   Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells [J].
Ahamed, Maqusood ;
Akhtar, Mohd Javed ;
Siddiqui, Maqsood A. ;
Ahmad, Javed ;
Musarrat, Javed ;
Al-Khedhairy, Abdulaziz A. ;
AlSalhi, Mohamad S. ;
Alrokayan, Salman A. .
TOXICOLOGY, 2011, 283 (2-3) :101-108
[8]   Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders [J].
Akhtar, Mohd Javed ;
Ahamed, Maqusood ;
Alhadlaq, Hisham A. ;
Alshamsan, Aws .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2017, 1861 (04) :802-813
[9]   Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy [J].
Akhtar, Mohd Javed ;
Alhadlaq, Hisham A. ;
Kumar, Sudhir ;
Alrokayan, Salman A. ;
Ahamed, Maqusood .
ARCHIVES OF TOXICOLOGY, 2015, 89 (11) :1895-1907
[10]   Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells [J].
Akhtar, Mohd Javed ;
Alhadlaq, Hisham A. ;
Alshamsan, Aws ;
Khan, M. A. Majeed ;
Ahamed, Maqusood .
SCIENTIFIC REPORTS, 2015, 5