On ridge parameter estimators under stochastic subspace hypothesis

被引:10
作者
Arashi, M. [1 ]
Kibria, B. M. Golam [2 ]
Valizadeh, T. [3 ]
机构
[1] Shahrood Univ Technol, Sch Math Sci, Dept Stat, Shahrood, Iran
[2] Florida Int Univ, Dept Math & Stat, Miami, FL 33193 USA
[3] Amirkabir Univ Technol, Sch Math & Comp Sci, Dept Stat, Tehran, Iran
关键词
MSE; restricted estimator; ridge regression; simulation study; subspace hypothesis; REGRESSION; SIMULATION;
D O I
10.1080/00949655.2016.1239104
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper considers several estimators for estimating the restricted ridge parameter estimators. A simulation study has been conducted to compare the performance of these estimators. Based on the simulation study we found that, increasing the correlation between the independent variables has positive effect on the mean square error (MSE). However, increasing the value of. has negative effect on MSE. When the sample size increases, the MSE decreases even when the correlation between the independent variables is large. Two real life examples have been considered to illustrate the performance of the estimators.
引用
收藏
页码:966 / 983
页数:18
相关论文
共 29 条
[1]   Mean squared error matrix comparisons of some biased estimators in linear regression [J].
Akdeniz, F ;
Erol, H .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (12) :2389-2413
[2]   ON THE ALMOST UNBIASED GENERALIZED LIU ESTIMATOR UNBIASED ESTIMATION OF THE BIAS AND MSE [J].
AKDENIZ, F ;
KACIRANLAR, S .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (07) :1789-1797
[3]   Stein-type improvement under stochastic constraints: Use of multivariate Student-t model in regression [J].
Arashi, M. ;
Tabatabaey, S. M. M. .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) :2142-2153
[4]  
Arashi M., 2010, J APPL PROBAB STAT, V5, P145
[5]   Ridge Estimation under the Stochastic Restriction [J].
Bashtian, M. Hassanzadeh ;
Arashi, M. ;
Tabatabaey, S. M. M. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (21) :3711-3747
[6]   Using improved estimation strategies to combat multicollinearity [J].
Bashtian, M. Hassanzadeh ;
Arashi, M. ;
Tabatabaey, S. M. M. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (12) :1773-1797
[7]   A SIMULATION STUDY OF SOME RIDGE ESTIMATORS [J].
GIBBONS, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (373) :131-139
[8]  
Gruber M., 1998, Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators
[9]  
Hocking R. R., 1976, COMMUNICATIONS STA A, VA25, P2349
[10]   RIDGE REGRESSION - SOME SIMULATIONS [J].
HOERL, AE ;
KENNARD, RW ;
BALDWIN, KF .
COMMUNICATIONS IN STATISTICS, 1975, 4 (02) :105-123