Electron correlation;
Radial density;
Density functional theory;
Ab initio densities;
LOCAL SPIN-DENSITY;
GENERALIZED-GRADIENT APPROXIMATIONS;
ATOMIC SHELL STRUCTURE;
MANY-ELECTRON SYSTEMS;
EXCHANGE FUNCTIONALS;
CORRELATION ENERGIES;
HARTREE-FOCK;
BASIS-SETS;
MOLECULES;
CONFIGURATIONS;
D O I:
10.1007/s00214-009-0638-5
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In an attempt to get more insight into the links between the coverage of dynamic electron correlation effects defined in traditional wave function theories (WFT) by density functional theories (DFT) we have performed comprehensive studies for the Ar atom, for which the dynamic correlation effects play the dominant role. A density-based approach directly hinged on difference radial density (DRD) distributions defined with respect the Hartree-Fock radial density has been employed for analyzing the impact of dynamic correlation effects on the density. The DRD-distributions calculated by ab initio methods have been compared with their DFT counterparts generated for representatives of several generations of broadly used exchange-correlation functionals and for the recently developed orbital-dependent OEP2 exchange-correlation functional (Bartlett et al. in J Chem Phys 122:034104, 2005). For the local, generalized-gradient, and hybrid functionals it has been found that the dynamic WFT correlation effects on the density are to a significant extent accounted for by densities resulting from exchange-only calculations. It has been shown that the removal of self-interaction errors does not change this result. It has been demonstrated that the VWN5 and LYP correlation functionals do not represent any substantial dynamical correlation effects on the electron density, whereas these effects are well represented by the orbital-dependent OEP2 correlation functional. Critical comparison of the results of the present investigations with various published results obtained for more complex many-electron systems has been made. Attention has been paid to bringing into sharper relief the differences between the conclusions reached when using energy- or density-based criteria.