PRIME IDEAL FACTORIZATION IN A NUMBER FIELD VIA NEWTON POLYGONS

被引:1
|
作者
El Fadil, Lhoussain [1 ,2 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, POB 1874, Atlas Fes, Fes, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, POB 1874 Atlas Fes, Fes, Morocco
关键词
prime factorization; valuation; phi-expansion; Newton polygon;
D O I
10.21136/CMJ.2021.0516-19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field defined by an irreducible polynomial F (X) is an element of Z[X] and Z(K) its ring of integers. For every prime integer p, we give sufficient and necessary conditions on F (X) that guarantee the existence of exactly r prime ideals of Z(K) lying above p, where F (X) factors into powers of r monic irreducible polynomials in F-p[X]. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly r prime ideals of Z(K) lying above p. We further specify for every prime ideal of Z(K) lying above p, the ramification index, the residue degree, and a p-generator.
引用
收藏
页码:529 / 543
页数:15
相关论文
共 50 条
  • [41] THE PRIME NUMBER THEOREM VIA THE LARGE SIEVE
    HILDEBRAND, A
    MATHEMATIKA, 1986, 33 (65) : 23 - 30
  • [42] ON THE CLASS NUMBER OF AN ABELIAN FIELD WITH PRIME CONDUCTOR
    YOSHINO, K
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (07) : 278 - 281
  • [43] NUMBER OF IDEAL CLASSES OF A DIHEDRAL EXTENSION OF A NUMBER-FIELD
    CASTELA, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (07): : 483 - 486
  • [44] The condition number associated with ideal lattices from odd prime degree cyclic number fields
    de Araujo, Robson Ricardo
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2025, 19 (01)
  • [45] Decomposition law for the prime ideal of arbitary algebraic number fields in the field of l t ten unit root.
    Berger, NGWH
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1920, 22 (6/10): : 873 - 875
  • [46] Prime factorization via localized tile assembly in a DNA origami framework
    Zhang, Yinan
    Yin, Xiaoyao
    Cui, Chengjun
    He, Kun
    Wang, Fei
    Chao, Jie
    Li, Tao
    Zuo, Xiaolei
    Li, Ailing
    Wang, Lihua
    Wang, Na
    Bo, Xiaochen
    Fan, Chunhai
    SCIENCE ADVANCES, 2023, 9 (13)
  • [48] Harmonic number identities via the Newton–Andrews method
    Weiping Wang
    Cangzhi Jia
    The Ramanujan Journal, 2014, 35 : 263 - 285
  • [49] AN UPPER BOUND ON THE NUMBER OF SELF-AVOIDING POLYGONS VIA JOINING
    Hammond, Alan
    ANNALS OF PROBABILITY, 2018, 46 (01): : 175 - 206
  • [50] The Number Theoretic Omega Function and Summations Involving the Exponents of Prime Numbers in the Factorization of Factorials
    Mehdi Hassani
    Mahmoud Marie
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 3501 - 3533