PRIME IDEAL FACTORIZATION IN A NUMBER FIELD VIA NEWTON POLYGONS

被引:1
|
作者
El Fadil, Lhoussain [1 ,2 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, POB 1874, Atlas Fes, Fes, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, POB 1874 Atlas Fes, Fes, Morocco
关键词
prime factorization; valuation; phi-expansion; Newton polygon;
D O I
10.21136/CMJ.2021.0516-19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field defined by an irreducible polynomial F (X) is an element of Z[X] and Z(K) its ring of integers. For every prime integer p, we give sufficient and necessary conditions on F (X) that guarantee the existence of exactly r prime ideals of Z(K) lying above p, where F (X) factors into powers of r monic irreducible polynomials in F-p[X]. The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly r prime ideals of Z(K) lying above p. We further specify for every prime ideal of Z(K) lying above p, the ramification index, the residue degree, and a p-generator.
引用
收藏
页码:529 / 543
页数:15
相关论文
共 50 条
  • [31] A CANONICAL ORDERING OF POLYBENZENES AND POLYMANTANES USING A PRIME NUMBER FACTORIZATION TECHNIQUE
    Elk, Seymour B.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1990, 4 (01) : 55 - 68
  • [32] Parallel Nonnegative Tensor Factorization via Newton Iteration on Matrices
    Flatz, Markus
    Vajtersic, Marian
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 1014 - 1015
  • [33] Efficient Nonnegative Matrix Factorization via projected Newton method
    Gong, Pinghua
    Zhang, Changshui
    PATTERN RECOGNITION, 2012, 45 (09) : 3557 - 3565
  • [34] A kilobit special number field sieve factorization
    Aoki, Kazumaro
    Franke, Jens
    Kleinjung, Thorsten
    Lenstra, Arjen K.
    Osvik, Dag Arne
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2007, 2007, 4833 : 1 - +
  • [35] ON CLASS NUMBER OF AN ABSOLUTELY CYCLIC NUMBER FIELD OF PRIME DEGREE
    ADACHI, N
    PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (08): : 647 - &
  • [36] The number of solutions of congruence of homogeneous quadratic polynomial with prime ideal modulus
    Le, Manh Van
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025,
  • [37] Euclidean ideal classes in Galois number fields of odd prime degree
    Murty, V. Kumar
    Sivaraman, J.
    RESEARCH IN NUMBER THEORY, 2022, 8 (03)
  • [38] Euclidean ideal classes in Galois number fields of odd prime degree
    V. Kumar Murty
    J. Sivaraman
    Research in Number Theory, 2022, 8
  • [39] Prime Spectrum of the Ring of Adeles of a Number Field
    Serrano Holgado, Alvaro
    MATHEMATICS, 2022, 10 (19)
  • [40] The number field sieve in the medium prime case
    Joux, Antoine
    Lercier, Reynald
    Smart, Nigel
    Vercauteren, Frederik
    ADVANCES IN CRYPTOLOGY - CRYPTO 2006, PROCEEDINGS, 2006, 4117 : 326 - 344