Image Segmentation and Dynamic Lineage Analysis in Single-Cell Fluorescence Microscopy

被引:68
|
作者
Wang, Quanli [1 ,2 ]
Niemi, Jarad [1 ]
Tan, Chee-Meng [3 ]
You, Lingchong [2 ,3 ]
West, Mike [1 ,2 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Duke Univ, Inst Genome Sci & Policy, Durham, NC 27708 USA
[3] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
cell tracking; fluorescent microscopy; hybrid image filters; image masking; image segmentation; single-cell lineage tracking; STOCHASTIC GENE-EXPRESSION; TRACKING; NOISE; DIFFERENTIATION; DEPENDENCE; CIRCUIT; NETWORK; LEVEL; CYCLE;
D O I
10.1002/cyto.a.20812
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An increasingly common component of studies in synthetic and systems biology is analysis of dynamics of gene expression at the single-cell level, a Context that is heavily dependent on the use of time-lapse movies. Extracting quantitative data on the single-cell temporal dynamics from such movies remains a major challenge. Here, we describe novel methods for automating key steps in the analysis of single-cell, fluorescent images-segmentation and lineage reconstruction-to recognize and track individual cells over time. The automated analysis iteratively combines a set of extended morphological methods for segmentation, and uses a neighborhood-based scoring method for frame-to-frame lineage linking. Our studies with bacteria, budding yeast and human cells, demonstrate the portability and usability of these methods, whether using phase, bright field or fluorescent images. These examples also demonstrate the utility of our integrated approach in facilitating analyses of engineered and natural cellular networks in diverse settings. The automated methods are implemented in freely available, open-source software. (C) 2009 International Society for Advancement of Cytometry
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [41] Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development
    Fan, Xiaoying
    Fu, Yuanyuan
    Zhou, Xin
    Sun, Le
    Yang, Ming
    Wang, Mengdi
    Chen, Ruiguo
    Wu, Qian
    Yong, Jun
    Dong, Ji
    Wen, Lu
    Qiao, Jie
    Wan, Xiaoqun
    Tang, Fuchou
    SCIENCE ADVANCES, 2020, 6 (34)
  • [42] Single-cell mass cytometry analysis reveals stem cell heterogeneity
    Meharwade, Thulaj
    Joumier, Loick
    Parisotto, Maxime
    Malleshaiah, Mohan
    METHODS, 2022, 208 : 9 - 18
  • [43] Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria
    Galbusera, Luca
    Bellement-Theroue, Gwendoline
    Urchueguia, Arantxa
    Julou, Thomas
    van Nimwegen, Erik
    PLOS ONE, 2020, 15 (10):
  • [44] Object-Oriented Segmentation of Cell Nuclei in Fluorescence Microscopy Images
    Koyuncu, Can Fahrettin
    Cetin-Atalay, Rengul
    Gunduz-Demir, Cigdem
    CYTOMETRY PART A, 2018, 93A (10) : 1019 - 1028
  • [45] Single-cell profiling identifies a novel human polyclonal unconventional T cell lineage
    Billiet, Lore
    De Cock, Laurenz
    Sanchez, Guillem Sanchez
    Mayer, Rupert L.
    Goetgeluk, Glenn
    De Munter, Stijn
    Pille, Melissa
    Ingels, Joline
    Jansen, Hanne
    Weening, Karin
    Pascal, Eva
    Raes, Killian
    Bonte, Sarah
    Kerre, Tessa
    Vandamme, Niels
    Seurinck, Ruth
    Roels, Jana
    Lavaert, Marieke
    Van Nieuwerburgh, Filip
    Leclercq, Georges
    Taghon, Tom
    Impens, Francis
    Menten, Bjorn
    Vermijlen, David
    Vandekerckhove, Bart
    JOURNAL OF EXPERIMENTAL MEDICINE, 2023, 220 (06)
  • [46] Cascades Neural Network based Segmentation of Fluorescence Microscopy Cell Nuclei
    Hayajneh, Sofyan M. A.
    Alomari, Mohammad H.
    Al-Shargabi, Bassam
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (05) : 275 - 285
  • [47] Attributed Relational Graphs for Cell Nucleus Segmentation in Fluorescence Microscopy Images
    Arslan, Salim
    Ersahin, Tulin
    Cetin-Atalay, Rengul
    Gunduz-Demir, Cigdem
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (06) : 1121 - 1131
  • [48] Gaussian Dynamic Convolution for Efficient Single-Image Segmentation
    Sun, Xin
    Chen, Changrui
    Wang, Xiaorui
    Dong, Junyu
    Zhou, Huiyu
    Chen, Sheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2937 - 2948
  • [49] Microfluidics and single-cell microscopy to study stochastic processes in bacteria
    Potvin-Trottier, Laurent
    Luro, Scott
    Paulsson, Johan
    CURRENT OPINION IN MICROBIOLOGY, 2018, 43 : 186 - 192
  • [50] Fluorescence microscopy image segmentation based on graph and fuzzy methods: A comparison with ensemble method
    Beheshti, Maedeh
    Ashapure, Akash
    Rahnemoonfar, Maryam
    Faichney, Jolon
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (04) : 2563 - 2578