Long-time behavior of solutions to Hamilton-Jacobi equations with quadratic gradient term

被引:4
|
作者
Fujita, Yasuhiro [1 ]
Loreti, Paola [2 ]
机构
[1] Toyama Univ, Dept Math, Toyama 9308555, Japan
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Applica, Rome, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2009年 / 16卷 / 06期
关键词
Rates of convergence; Hamilton-Jacobi equation; Viscosity solutions; Semiconvexity; EUCLIDEAN-N-SPACE; ASYMPTOTIC SOLUTIONS; VISCOSITY SOLUTIONS; PERIODIC-SOLUTIONS; CONVERGENCE;
D O I
10.1007/s00030-009-0034-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a rate of convergence appearing in the long-time behavior of viscosity solutions of the Cauchy problem for the Hamilton-Jacobi equation u(t)(x, t) + alpha x . Du(x, t) + beta vertical bar Du(x, t)vertical bar(2) = f(x) in R(n) x (0, infinity), where alpha, beta > 0 are constants and f is a Lipschitz and semiconvex function on R(n). Our goal of this paper is to show that the semiconvexity property of f is an important factor which determines this rate of convergence. We also establish existence, uniqueness and Lipschitz continuity of viscosity solutions of the Cauchy problem and the corresponding ergodic problem for Hamilton-Jacobi equations in R(n)
引用
收藏
页码:771 / 791
页数:21
相关论文
共 50 条
  • [21] FINITE-TIME CONVERGENCE OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    Wang, Kaizhi
    Yan, Jun
    Zhao, Kai
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (03) : 1187 - 1196
  • [22] Large-time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN
    Barles, Guy
    Quaas, Alexander
    Rodriguez-Paredes, Andrei
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 46 (03) : 547 - 572
  • [23] On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations
    Barles, Guy
    Porretta, Alessio
    Tchamba, Thierry Tabet
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (05): : 497 - 519
  • [24] On Almost Periodic Viscosity Solutions to Hamilton-Jacobi Equations
    Panov, Evgeny Yu
    MINIMAX THEORY AND ITS APPLICATIONS, 2020, 5 (02): : 383 - 400
  • [25] Remarks on the large time behavior of viscosity solutions of quasi-monotone weakly coupled systems of Hamilton-Jacobi equations
    Mitake, Hiroyoshi
    Tran, Hung V.
    ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) : 43 - 70
  • [26] A dynamical approach to the large-time behavior of solutions to weakly coupled systems of Hamilton-Jacobi equations
    Mitake, H.
    Tran, H. V.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (01): : 76 - 93
  • [27] Propagation of singularities for solutions of Hamilton-Jacobi equations
    Albano, P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 684 - 687
  • [28] THE ASYMPTOTIC BOUNDS OF VISCOSITY SOLUTIONS OF THE CAUCHY PROBLEM FOR HAMILTON-JACOBI EQUATIONS
    Wang, Kaizhi
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) : 217 - 232
  • [29] DISCONTINUOUS SOLUTIONS IN L~∞ FOR HAMILTON-JACOBI EQUATIONS
    CHEN GUIQIANG(Departmeat of Mathematics
    ChineseAnnalsofMathematics, 2000, (02) : 165 - 186
  • [30] On large solutions for fractional Hamilton-Jacobi equations
    Davila, Gonzalo
    Quaas, Alexander
    Topp, Erwin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (05) : 1313 - 1335