Product of repdigits with consecutive lengths in the Fibonacci sequence.

被引:2
作者
Gomez, Jhonny C. [1 ]
Luca, Florian [2 ,3 ,4 ]
机构
[1] Univ Valle, Dept Matemat, Calle 13 100-00, Cali 25360, Colombia
[2] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[3] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, Jeddah, Saudi Arabia
[4] UNAM, Ctr Ciencias Matemat, Morelia, Michoacan, Mexico
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2021年 / 27卷 / 02期
关键词
Fibonacci numbers; Repdigits; Applications of lower bounds for nonzero linear forms in logarithms of algebraic numbers; LLL algorithm;
D O I
10.1007/s40590-021-00325-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the well-known Fibonacci sequence, the number F-10=55=5 center dot 11 is an example not only as a repdigit (a number with only one distinct digit) but also as a product of two repdigits with consecutive lengths, 5 and 11. Here we find all the Fibonacci numbers that can be written as the product of k repdigits with consecutive lengths.
引用
收藏
页数:9
相关论文
共 7 条
[1]   On a conjecture about repdigits in k-generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :623-639
[2]  
Cohen Henri., 2007, Number Theory: Volume I: Tools and Diophantine Equations, VI
[3]  
Halton J. H., 1966, FIBONACCI QUART, V4, P217
[4]  
Luca F., 2000, Portugaliae Math, V57, P243
[5]  
Marques D., 2012, Rend. Istit. Mat. Univ. Trieste, V44, P393
[6]  
Marques D, 2015, UTILITAS MATHEMATICA, V98, P23
[7]   An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II [J].
Matveev, EM .
IZVESTIYA MATHEMATICS, 2000, 64 (06) :1217-1269