Inositol phosphorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae

被引:139
作者
Levine, TP [1 ]
Wiggins, CAR [1 ]
Munro, S [1 ]
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
关键词
D O I
10.1091/mbc.11.7.2267
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The plasma membrane of eukaryotic cells differs in lipid composition from most of the internal organelles, presumably reflecting differences in many of its functions. Ln particular, the plasma membrane is rich in sphingolipids and sterols, one property of which is to decrease the permeability and increase the thickness of lipid bilayers. In this paper, we examine the length of transmembrane domains throughout the yeast secretory pathway. Although the transmembrane domains of cis and medial Golgi residents are similar to those of endoplasmic reticulum proteins, these domains lengthen substantially beyond the medial Golgi, suggesting a thickening of the bilayer. Yeast sphingolipids have particularly long acyl chains, and Aur1p, the inositol phosphorylceramide synthase that initiates yeast sphingolipid synthesis, was found to be located in the Golgi apparatus by both immunofluorescence and membrane fractionation, with its active site apparently in the Golgi lumen. Thus, it appears that sphingolipid synthesis in yeast takes place in the Golgi, separated from glycerophospholipid synthesis in the endoplasmic reticulum. A similar separation has been found in mammalian cells, and this conservation suggests that such an arrangement of enzymes within the secretory pathway could be important for the creation of bilayers of different thickness within the cell.
引用
收藏
页码:2267 / 2281
页数:15
相关论文
共 63 条
[1]   THE YEAST CA-2+-ATPASE HOMOLOG, PMR1, IS REQUIRED FOR NORMAL GOLGI FUNCTION AND LOCALIZES IN A NOVEL GOLGI-LIKE DISTRIBUTION [J].
ANTEBI, A ;
FINK, GR .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (06) :633-654
[2]   RECONSTITUTION OF SEC GENE PRODUCT-DEPENDENT INTERCOMPARTMENTAL PROTEIN-TRANSPORT [J].
BAKER, D ;
HICKE, L ;
REXACH, M ;
SCHLEYER, M ;
SCHEKMAN, R .
CELL, 1988, 54 (03) :335-344
[3]   The Dri 42 gene, whose expression is up-regulated during epithelial differentiation, encodes a novel endoplasmic reticulum resident transmembrane protein [J].
Barila, D ;
Plateroti, M ;
Nobili, F ;
Muda, AO ;
Xie, YH ;
Morimoto, T ;
Perozzi, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (47) :29928-29936
[4]   BIOSYNTHESIS OF PHOSPHOINOSITOL-CONTAINING SPHINGOLIPIDS FROM PHOSPHATIDYLINOSITOL BY A MEMBRANE PREPARATION FROM SACCHAROMYCES-CEREVISIAE [J].
BECKER, GW ;
LESTER, RL .
JOURNAL OF BACTERIOLOGY, 1980, 142 (03) :747-754
[5]   SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide [J].
Beeler, TJ ;
Fu, D ;
Rivera, J ;
Monaghan, E ;
Gable, K ;
Dunn, TM .
MOLECULAR & GENERAL GENETICS, 1997, 255 (06) :570-579
[6]   CHOLESTEROL AND THE GOLGI-APPARATUS [J].
BRETSCHER, MS ;
MUNRO, S .
SCIENCE, 1993, 261 (5126) :1280-1281
[7]   Mammalian lipid phosphate phosphohydrolases [J].
Brindley, DN ;
Waggoner, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (38) :24281-24284
[8]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[9]   Involvement of long chain fatty acid elongation in the trafficking of secretory vesicles in yeast [J].
David, D ;
Sundarababu, S ;
Gerst, JE ;
Gerst, JE .
JOURNAL OF CELL BIOLOGY, 1998, 143 (05) :1167-1182
[10]   Sphingolipid functions in Saccharomyces cerevisiae:: Comparison to mammals [J].
Dickson, RC .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :27-48