Tuning Thermal Expansion in Metal-Organic Frameworks Using a Mixed Linker Solid Solution Approach

被引:51
作者
Baxter, Samuel J. [1 ,3 ]
Schneemann, Andreas [3 ]
Ready, Austin D. [3 ]
Wijeratne, Pavithra [3 ]
Wilkinson, Angus P. [1 ,2 ]
Burtch, Nicholas C. [3 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Sandia Natl Labs, Livermore, CA 94550 USA
关键词
CRYSTAL-STRUCTURES; STABILITY; WATER; MECHANISMS; FAMILY;
D O I
10.1021/jacs.9b06109
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Several metal-organic frameworks are known to display negative thermal expansion (NTE). However, unlike traditional NTE material classes, there have been no reports where the thermal expansion of a MOF has been tuned continuously from negative to positive through the formation of single-phase solid solutions. In the system Zn-DMOF-TMx, Zn-2[(bdc)(2-2x)(TM-bdabco)(2x)][dabco], the introduction of increasing amounts of TM-bdc, with four methyl groups decorating the benzene dicarboxylate linker, leads to a smooth transition from negative to positive thermal expansion in the a-b plane of this tetragonal material. The temperature at which zero thermal expansion occurs evolves from similar to 186 K for the Zn-DMOF parent structure (x = 0) to similar to 325 K for Zn-DMOF-TM (x = 1.0). The formation of mixed linker solid solutions is likely a general strategy for the control of thermal expansion in MOFs.
引用
收藏
页码:12849 / 12854
页数:6
相关论文
共 57 条
[31]   Two Decades of Negative Thermal Expansion Research: Where Do We Stand? [J].
Lind, Cora .
MATERIALS, 2012, 5 (06) :1125-1154
[32]   Negative thermal expansion in molecular materials [J].
Liu, Zhanning ;
Gao, Qilong ;
Chen, Jun ;
Deng, Jinxia ;
Lin, Kun ;
Xing, Xianran .
CHEMICAL COMMUNICATIONS, 2018, 54 (41) :5164-5176
[33]   Elucidating Negative Thermal Expansion in MOF-5 [J].
Lock, Nina ;
Wu, Yue ;
Christensen, Mogens ;
Cameron, Lisa J. ;
Peterson, Vanessa K. ;
Bridgeman, Adam J. ;
Kepert, Cameron J. ;
Iversen, Bo B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16181-16186
[34]   Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8 [J].
Mary, TA ;
Evans, JSO ;
Vogt, T ;
Sleight, AW .
SCIENCE, 1996, 272 (5258) :90-92
[35]   Phonons and anomalous thermal expansion behaviour in crystalline solids [J].
Mittal, R. ;
Gupta, M. K. ;
Chaplot, S. L. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :360-445
[36]   Solid solubility, phase transitions, thermal expansion, and compressibility in Sc1-xAlxF3 [J].
Morelock, Cody R. ;
Gallington, Leighanne C. ;
Wilkinson, Angus P. .
JOURNAL OF SOLID STATE CHEMISTRY, 2015, 222 :96-102
[37]   Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets [J].
O'Keeffe, Michael ;
Yaghi, Omar M. .
CHEMICAL REVIEWS, 2012, 112 (02) :675-702
[38]   THERMAL-EXPANSION OF ZRP2O7 AND RELATED SOLID-SOLUTIONS [J].
OTA, T ;
YAMAI, I .
JOURNAL OF MATERIALS SCIENCE, 1987, 22 (10) :3762-3764
[39]   VERY LOW THERMAL-EXPANSION COEFFICIENT MATERIALS [J].
ROY, R ;
AGRAWAL, DK ;
MCKINSTRY, HA .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1989, 19 :59-81
[40]   Compositional inhomogeneity and tuneable thermal expansion in mixed-metal ZIF-8 analogues [J].
Sapnik, Adam F. ;
Geddes, Harry S. ;
Reynolds, Emily M. ;
Yeung, Hamish H. -M. ;
Goodwin, Andrew L. .
CHEMICAL COMMUNICATIONS, 2018, 54 (69) :9651-9654