Tuning Thermal Expansion in Metal-Organic Frameworks Using a Mixed Linker Solid Solution Approach

被引:46
作者
Baxter, Samuel J. [1 ,3 ]
Schneemann, Andreas [3 ]
Ready, Austin D. [3 ]
Wijeratne, Pavithra [3 ]
Wilkinson, Angus P. [1 ,2 ]
Burtch, Nicholas C. [3 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Sandia Natl Labs, Livermore, CA 94550 USA
关键词
CRYSTAL-STRUCTURES; STABILITY; WATER; MECHANISMS; FAMILY;
D O I
10.1021/jacs.9b06109
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Several metal-organic frameworks are known to display negative thermal expansion (NTE). However, unlike traditional NTE material classes, there have been no reports where the thermal expansion of a MOF has been tuned continuously from negative to positive through the formation of single-phase solid solutions. In the system Zn-DMOF-TMx, Zn-2[(bdc)(2-2x)(TM-bdabco)(2x)][dabco], the introduction of increasing amounts of TM-bdc, with four methyl groups decorating the benzene dicarboxylate linker, leads to a smooth transition from negative to positive thermal expansion in the a-b plane of this tetragonal material. The temperature at which zero thermal expansion occurs evolves from similar to 186 K for the Zn-DMOF parent structure (x = 0) to similar to 325 K for Zn-DMOF-TM (x = 1.0). The formation of mixed linker solid solutions is likely a general strategy for the control of thermal expansion in MOFs.
引用
收藏
页码:12849 / 12854
页数:6
相关论文
共 57 条
  • [31] Two Decades of Negative Thermal Expansion Research: Where Do We Stand?
    Lind, Cora
    [J]. MATERIALS, 2012, 5 (06): : 1125 - 1154
  • [32] Negative thermal expansion in molecular materials
    Liu, Zhanning
    Gao, Qilong
    Chen, Jun
    Deng, Jinxia
    Lin, Kun
    Xing, Xianran
    [J]. CHEMICAL COMMUNICATIONS, 2018, 54 (41) : 5164 - 5176
  • [33] Elucidating Negative Thermal Expansion in MOF-5
    Lock, Nina
    Wu, Yue
    Christensen, Mogens
    Cameron, Lisa J.
    Peterson, Vanessa K.
    Bridgeman, Adam J.
    Kepert, Cameron J.
    Iversen, Bo B.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) : 16181 - 16186
  • [34] Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8
    Mary, TA
    Evans, JSO
    Vogt, T
    Sleight, AW
    [J]. SCIENCE, 1996, 272 (5258) : 90 - 92
  • [35] Phonons and anomalous thermal expansion behaviour in crystalline solids
    Mittal, R.
    Gupta, M. K.
    Chaplot, S. L.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2018, 92 : 360 - 445
  • [36] Solid solubility, phase transitions, thermal expansion, and compressibility in Sc1-xAlxF3
    Morelock, Cody R.
    Gallington, Leighanne C.
    Wilkinson, Angus P.
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2015, 222 : 96 - 102
  • [37] Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets
    O'Keeffe, Michael
    Yaghi, Omar M.
    [J]. CHEMICAL REVIEWS, 2012, 112 (02) : 675 - 702
  • [38] THERMAL-EXPANSION OF ZRP2O7 AND RELATED SOLID-SOLUTIONS
    OTA, T
    YAMAI, I
    [J]. JOURNAL OF MATERIALS SCIENCE, 1987, 22 (10) : 3762 - 3764
  • [39] VERY LOW THERMAL-EXPANSION COEFFICIENT MATERIALS
    ROY, R
    AGRAWAL, DK
    MCKINSTRY, HA
    [J]. ANNUAL REVIEW OF MATERIALS SCIENCE, 1989, 19 : 59 - 81
  • [40] Compositional inhomogeneity and tuneable thermal expansion in mixed-metal ZIF-8 analogues
    Sapnik, Adam F.
    Geddes, Harry S.
    Reynolds, Emily M.
    Yeung, Hamish H. -M.
    Goodwin, Andrew L.
    [J]. CHEMICAL COMMUNICATIONS, 2018, 54 (69) : 9651 - 9654