On the Exponentiated Weibull Rayleigh Distribution

被引:13
作者
Elgarhy, Mohammed [1 ]
Elbatal, Ibrahim [2 ,3 ]
Hamedani, Gholam [4 ]
Hassan, Amal [2 ]
机构
[1] Valley High Inst Management Finance & Informat Sy, Obour, Qaliubia, Egypt
[2] Cairo Univ, Fac Grad Studies Stat Res, Dept Math Stat, Giza, Egypt
[3] Islamic Univ, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
[4] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2019年 / 32卷 / 03期
关键词
Exponentiated Weibull-family of distributions; Maximum likelihood; Moments; Characterizations; FAMILY;
D O I
10.35378/gujs.315832
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new four-parameter probability model, referred to the exponentiated Weibull Rayleigh (EWR) distribution, is introduced. Essential statistical properties of the distribution are considered. The maximum likelihood estimators of population parameters are given in case of complete sample. Simulation study is carried out to estimate the model parameters of EWR distribution. Additionally, parameter estimators are given in case of Type II censored samples. We come up with two applications to confirm the usefulness of the proposed distribution.
引用
收藏
页码:1060 / 1081
页数:22
相关论文
共 24 条
[1]  
[Anonymous], 2016, Math. Theory Model.
[2]   ACQUISITION OF RESISTANCE IN GUINEA PIGS INFECTED WITH DIFFERENT DOSES OF VIRULENT TUBERCLE BACILLI [J].
BJERKEDAL, T .
AMERICAN JOURNAL OF HYGIENE, 1960, 72 (01) :130-148
[3]  
Bourguignon M., 2014, J DATA SCI, V12, P53, DOI [DOI 10.6339/JDS.201401_12(1).0004, DOI 10.6339/JDS.20140112(1).0004]
[4]   A new family of generalized distributions [J].
Cordeiro, Gauss M. ;
de Castro, Mario .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (07) :883-898
[5]  
David Herbert A, 2004, Order Statistics
[6]  
Elgarhy M, 2017, GAZI U J SCI, V30, P101
[7]   Beta-normal distribution and its applications [J].
Eugene, N ;
Lee, C ;
Famoye, F .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (04) :497-512
[8]  
GLANZEL W., 1990, Statistics, V21, P613, DOI 10.1080/02331889008802273
[9]  
GLANZEL W., 1987, Mathematical Statistics and Probability Theory, VB, P75, DOI 10.1007/978-94-009-3965-3
[10]  
Hamedani G. G., 2013, Technical Report, No. 484