Semiflows on topological spaces: Chain transitivity and semigroups

被引:55
作者
Patrao, Mauro [1 ]
San Martin, Luiz A. B. [1 ]
机构
[1] Univ Estadual Campinas, Inst Matemat, BR-13081970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
semiflows; chain recurrence; semigroups; Morse decomposition;
D O I
10.1007/s10884-006-9032-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies semiflows on topological spaces. A concept of chain recurrence, based on families of coverings, is introduced and related to Morse decomposition. The chain transitive components are studied via semigroup theory by the introduction of the shadowing semigroups associated to a sermflow.
引用
收藏
页码:155 / 180
页数:26
相关论文
共 13 条
  • [1] BARROS CJB, 2006, IN PRESS FORUM MATH
  • [2] BRAGABARROS CJ, 1996, MATH APL COMPUT, V15, P257
  • [3] Colonius F., 2000, SYS CON FDN
  • [4] THE GRADIENT STRUCTURE OF A FLOW .1.
    CONLEY, C
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 : 11 - 26
  • [5] Conley C., 1978, CBMS Regional Conference Series in Mathematics, V38
  • [6] Hurley M., 1995, J DYN DIFFER EQU, V7, P437, DOI DOI 10.1007/BF02219371
  • [7] Kelley John L., 1975, GEN TOPOLOGY
  • [8] MICHAEL E, 1951, T AM MATH SOC, V71, P152
  • [9] MORSE DECOMPOSITIONS AND CONNECTION MATRICES
    MOECKEL, R
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 : 227 - 249
  • [10] PATRAO M, J DYN DIFF EQ