A VORONOVSKAYA-TYPE THEOREM FOR A GENERAL CLASS OF DISCRETE OPERATORS

被引:31
作者
Bardaro, Carlo [1 ]
Mantellini, Ilaria [1 ]
机构
[1] Univ Perugia, Dept Math & Informat, I-06123 Perugia, Italy
关键词
Voronovskaya-type formula; moments; generalized sampling operators; discrete operators; MEYER-KONIG; APPROXIMATION; POLYNOMIALS;
D O I
10.1216/RMJ-2009-39-5-1411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we introduce a general class of discrete operators, not necessarily positive and we give a Voronovskaya-type formula for this class. Applications to generalized sampling-type operators and to a further generalization of the classical Szasz-Mirak'jan operator are given. Finally a survey on Voronovskaya's formula for classical discrete operators is treated.
引用
收藏
页码:1411 / 1442
页数:32
相关论文
共 45 条
[31]   On Pointwise Approximation Properties of Multivariate Semi-discrete Sampling Type Operators [J].
Carlo Bardaro ;
Ilaria Mantellini .
Results in Mathematics, 2017, 72 :1449-1472
[32]   NONLINEAR APPROXIMATION BY N-DIMENSIONAL SAMPLING TYPE DISCRETE OPERATORS WITH APPLICATIONS [J].
Aslan, Ismail .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (04) :1134-1152
[33]   On Pointwise Approximation Properties of Multivariate Semi-discrete Sampling Type Operators [J].
Bardaro, Carlo ;
Mantellini, Ilaria .
RESULTS IN MATHEMATICS, 2017, 72 (03) :1449-1472
[34]   Korovkin type theorem for Bernstein-Kantorovich operators via power summability method [J].
Braha, Naim L. .
ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
[35]   On statistical approximation of a general class of positive linear operators extended in q-calculus [J].
Radu, Cristina .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (06) :2317-2325
[36]   Commutativity and spectral properties for a general class of Szász-Mirakjan-Durrmeyer operators [J].
Abel, Ulrich ;
Acu, Ana Maria ;
Heilmann, Margareta ;
Rasa, Ioan .
ADVANCES IN OPERATOR THEORY, 2025, 10 (01)
[37]   On q-Analogue of Modified Kantorovich-Type Discrete-Beta Operators [J].
Sharma, Preeti ;
Mishra, Vishnu Narayan .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (01) :37-53
[38]   New Korovkin Type Theorem for Non-Tensor Meyer-Konig and Zeller Operators [J].
Ozarslan, Mehmet Ali .
RESULTS IN MATHEMATICS, 2016, 69 (3-4) :327-343
[39]   Korovkin type theorem for the functions defined in the Prism and the corresponding Meyer-Konig and Zeller operators [J].
Ozarslan, Mehmet Ali ;
Kara, Mustafa .
FILOMAT, 2024, 38 (32) :11501-11516
[40]   Discrete product integration methods for eigen-problems of a class of non-compact integral operators [J].
Long, Guangqing ;
Huang, Xiaoyuan ;
Tan, Aimei ;
Nelakanti, Gnaneshwar .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) :7964-7972