Robust Pricing and Hedging of Options on Multiple Assets and Its Numerics

被引:11
作者
Eckstein, Stephan [1 ]
Guo, Gaoyue [2 ]
Lim, Tongseok [3 ]
Obloj, Jan [4 ,5 ]
机构
[1] Univ Konstanz, Dept Math, Constance, Germany
[2] Cent Supelec, Lab MICS, F-91192 Gif Sur Yvette, France
[3] Purdue Univ, Krannert Sch Management, W Lafayette, IN 47907 USA
[4] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[5] Univ Oxford, St Johns Coll, Oxford OX2 6GG, England
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2021年 / 12卷 / 01期
基金
欧洲研究理事会;
关键词
robust pricing and hedging; optimal transport; martingale optimal transport; robust copula; multi-marginal transport; numerical methods; linear programming; machine learning; deep neural networks; MARTINGALE OPTIMAL TRANSPORT; DUALITY;
D O I
10.1137/19M1286256
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider robust pricing and hedging for options written on multiple assets given market option prices for the individual assets. The resulting problem is called the multimarginal martingale optimal transport problem. We propose two numerical methods to solve such problems: using discretization and linear programming applied to the primal side and using penalization and deep neural networks optimization applied to the dual side. We prove convergence for our methods and compare their numerical performance. We show how adding further information about call option prices at additional maturities can be incorporated and narrows down the no-arbitrage pricing bounds. Finally, we obtain structural results for the case of the payoff given by a weighted sum of covariances between the assets.
引用
收藏
页码:158 / 188
页数:31
相关论文
共 37 条
  • [1] SAMPLING OF ONE-DIMENSIONAL PROBABILITY MEASURES IN THE CONVEX ORDER AND COMPUTATION OF ROBUST OPTION PRICE BOUNDS
    Alfonsi, Aurelien
    Corbetta, Jacopo
    Jourdain, Benjamin
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2019, 22 (03)
  • [2] [Anonymous], 2003, TOPICS OPTIMAL TRANS
  • [3] [Anonymous], 2012, THESIS
  • [4] Backhoff-Veraguas H., 2019, PREPRINT
  • [5] DUALITY FOR INCREASING CONVEX FUNCTIONALS WITH COUNTABLY MANY MARGINAL CONSTRAINTS
    Bartl, Daniel
    Cheridito, Patrick
    Kupper, Michael
    Tangpi, Ludovic
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (01): : 72 - 89
  • [6] COMPLETE DUALITY FOR MARTINGALE OPTIMAL TRANSPORT ON THE LINE
    Beiglbock, Mathias
    Nutz, Marcel
    Touzi, Nizar
    [J]. ANNALS OF PROBABILITY, 2017, 45 (05) : 3038 - 3074
  • [7] Optimal transport and Skorokhod embedding
    Beiglboeck, Mathias
    Cox, Alexander M. G.
    Huesmann, Martin
    [J]. INVENTIONES MATHEMATICAE, 2017, 208 (02) : 327 - 400
  • [8] Model-independent bounds for option prices-a mass transport approach
    Beiglboeck, Mathias
    Henry-Labordere, Pierre
    Penkner, Friedrich
    [J]. FINANCE AND STOCHASTICS, 2013, 17 (03) : 477 - 501
  • [9] ITERATIVE BREGMAN PROJECTIONS FOR REGULARIZED TRANSPORTATION PROBLEMS
    Benamou, Jean-David
    Carlier, Guillaume
    Cuturi, Marco
    Nenna, Luca
    Peyre, Gabriel
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) : A1111 - A1138
  • [10] PRICES OF STATE-CONTINGENT CLAIMS IMPLICIT IN OPTION PRICES
    BREEDEN, DT
    LITZENBERGER, RH
    [J]. JOURNAL OF BUSINESS, 1978, 51 (04) : 621 - 651