Permutation Entropy: New Ideas and Challenges

被引:57
作者
Keller, Karsten [1 ]
Mangold, Teresa [1 ]
Stolz, Inga [1 ]
Werner, Jenna [1 ]
机构
[1] Univ Lubeck, Inst Math, D-23562 Lubeck, Germany
关键词
ordinal patterns; Permutation entropy; Approximate entropy; Sample entropy; Conditional entropy of ordinal patterns; Kolmogorov-Sinai entropy; classification; COMPLEXITY;
D O I
10.3390/e19030134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Over recent years, some new variants of Permutation entropy have been introduced and applied to EEG analysis, including a conditional variant and variants using some additional metric information or being based on entropies that are different from the Shannon entropy. In some situations, it is not completely clear what kind of information the new measures and their algorithmic implementations provide. We discuss the new developments and illustrate them for EEG data.
引用
收藏
页数:16
相关论文
共 32 条
  • [1] Amigo JM, 2010, SPRINGER SER SYNERG, P1, DOI 10.1007/978-3-642-04084-9
  • [2] Ordinal symbolic analysis and its application to biomedical recordings
    Amigo, Jose M.
    Keller, Karsten
    Unakafova, Valentina A.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2034):
  • [3] Amigó JM, 2013, EUR PHYS J-SPEC TOP, V222, P241, DOI 10.1140/epjst/e2013-01839-6
  • [4] Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    Andrzejak, RG
    Lehnertz, K
    Mormann, F
    Rieke, C
    David, P
    Elger, CE
    [J]. PHYSICAL REVIEW E, 2001, 64 (06): : 8 - 061907
  • [5] KOLMOGOROV-SINAI ENTROPY VIA SEPARATION PROPERTIES OF ORDER-GENERATED σ-ALGEBRAS
    Antoniouk, Alexandra
    Keller, Karsten
    Maksymenko, Sergiy
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) : 1793 - 1809
  • [6] Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings
    Azami, Hamed
    Escudero, Javier
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2016, 23 : 28 - 41
  • [7] Permutation entropy: A natural complexity measure for time series
    Bandt, C
    Pompe, B
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 4
  • [8] Entropy of interval maps via permutations
    Bandt, C
    Keller, G
    Pompe, B
    [J]. NONLINEARITY, 2002, 15 (05) : 1595 - 1602
  • [9] Modified permutation-entropy analysis of heartbeat dynamics
    Bian, Chunhua
    Qin, Chang
    Ma, Qianli D. Y.
    Shen, Qinghong
    [J]. PHYSICAL REVIEW E, 2012, 85 (02)
  • [10] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32