Complex adjoint orbits in Lie theory and geometry

被引:3
作者
Crooks, Peter [1 ]
机构
[1] Leibniz Univ Hannover, Inst Differential Geometry, Welfengarten 1, D-30167 Hannover, Germany
关键词
Adjoint orbit; Semisimple algebraic group; HYPERKAHLER METRICS; EQUIVARIANT COHOMOLOGY; NILPOTENT ORBITS; NAHMS EQUATIONS; REPRESENTATIONS; SINGULARITIES; QUOTIENT;
D O I
10.1016/j.exmath.2017.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This expository article is an introduction to the adjoint orbits of complex semisimple groups, primarily in the algebro-geometric and Lie-theoretic contexts, and with a pronounced emphasis on the properties of semisimple and nilpotent orbits. It is intended to build a foundation for more specialized settings in which adjoint orbits feature prominently (ex. hyperkahler geometry, Landau-Ginzburg models, and the theory of symplectic singularities). Also included are a few arguments and observations that, to the author's knowledge, have not yet appeared in the research literature. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:104 / 144
页数:41
相关论文
共 59 条
  • [1] [Anonymous], LONDON MATH SOC LECT
  • [2] [Anonymous], 2004, GRAD TEXT M
  • [3] [Anonymous], 1975, Graduate Texts in Mathematics
  • [4] [Anonymous], 1995, Aspects Math.
  • [5] [Anonymous], 1993, Nilpotent Orbits in Semisimple Lie Algebras: an introduction
  • [6] [Anonymous], 1973, Uspehi Mat. Nauk
  • [7] Symplectic geometry of semisimple orbits
    Azad, Hassan
    van den Ban, Erik
    Biswas, Indranil
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 507 - 533
  • [8] Ballico E., 2016, ARXIV160105119, P16
  • [9] Baohua F., 2006, ANN MATH BLAISE PASC, V13, P209
  • [10] UNIPOTENT REPRESENTATIONS OF COMPLEX SEMISIMPLE GROUPS
    BARBASCH, D
    VOGAN, DA
    [J]. ANNALS OF MATHEMATICS, 1985, 121 (01) : 41 - 110