Experimental and Computational Investigation of Layer-Dependent Thermal Conductivities and Interfacial Thermal Conductance of One- to Three-Layer WSe2

被引:51
作者
Easy, Elham [1 ]
Gao, Yuan [2 ]
Wang, Yingtao [1 ]
Yan, Dingkai [3 ]
Goushehgir, Seyed M. [4 ]
Yang, Eui-Hyeok [1 ]
Xu, Baoxing [2 ]
Zhang, Xian [1 ]
机构
[1] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA
[2] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[3] Stevens Inst Technol, Dept Chem Engn & Mat Sci, Hoboken, NJ 07030 USA
[4] Urmia Univ Technol, Dept Mech Engn, Orumiyeh, West Azerbaijan, Iran
关键词
tungsten diselenide; Raman spectroscopy; thermal conductivity; interfacial thermal conductance; layer-dependent trend; HEXAGONAL BORON-NITRIDE; MOS2; TRANSPORT; GRAPHENE; RAMAN; PHOTOLUMINESCENCE; TEMPERATURE; GENERATION;
D O I
10.1021/acsami.0c21045
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional materials such as graphene and transition metal dichalcogenides (TMDCs) have received extensive research interest and investigations in the past decade. In this research, we used a refined opto-thermal Raman technique to explore the thermal transport properties of one popular TMDC material WSe2, in the single-layer (1L), bilayer (2L), and trilayer (3L) forms. This measurement technique is direct without additional processing to the material, and the absorption coefficient of WSe2 is discovered during the measurement process to further increase this technique's precision. By comparing the sample's Raman spectroscopy spectra through two different laser spot sizes, we are able to obtain two parameters-lateral thermal conductivities of 1L-3L WSe2 and the interfacial thermal conductance between 1L-3L WSe2 and the substrate. We also implemented full-atom nonequilibrium molecular dynamics simulations (NEMD) to computationally investigate the thermal conductivities of 1L-3L WSe2 to provide comprehensive evidence and confirm the experimental results. The trend of the layer-dependent lateral thermal conductivities and interfacial thermal conductance of 1L-3L WSe2 is discovered. The room-temperature thermal conductivities for 1L-3L WSe2 are 37 +/- 12, 24 +/- 12, and 20 +/- 6 W/(m.K), respectively. The suspended 1L WSe2 possesses a thermal conductivity of 49 +/- 14 W/(m.K). Crucially, the interfacial thermal conductance values between 1L-3L WSe2 and the substrate are found to be 2.95 +/- 0.46, 3.45 +/- 0.50, and 3.46 +/- 0.45 MW/(m(2).K), respectively, with a flattened trend starting the 2L, a finding that provides the key information for thermal management and thermoelectric designs.
引用
收藏
页码:13063 / 13071
页数:9
相关论文
共 71 条
[1]   Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides [J].
Amani, Matin ;
Taheri, Peyman ;
Addou, Rafik ;
Ahn, Geun Ho ;
Kiriya, Daisuke ;
Lien, Der-Hsien ;
Ager, Joel W., III ;
Wallace, Robert M. ;
Jayey, Ali .
NANO LETTERS, 2016, 16 (04) :2786-2791
[2]   Thickness-dependent in-plane thermal conductivity of suspended MoS2 grown by chemical vapor deposition [J].
Bae, Jung Jun ;
Jeong, Hye Yun ;
Han, Gang Hee ;
Kim, Jaesu ;
Kim, Hyun ;
Kim, Min Su ;
Moon, Byoung Hee ;
Lim, Seong Chu ;
Lee, Young Hee .
NANOSCALE, 2017, 9 (07) :2541-2547
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[5]   High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion [J].
Cai, Qiran ;
Scullion, Declan ;
Gan, Wei ;
Falin, Alexey ;
Zhang, Shunying ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Chen, Ying ;
Santos, Elton J. G. ;
Li, Lu Hua .
SCIENCE ADVANCES, 2019, 5 (06)
[6]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[7]   Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons [J].
Cao, Hai-Yuan ;
Guo, Zhi-Xin ;
Xiang, Hongjun ;
Gong, Xin-Gao .
PHYSICS LETTERS A, 2012, 376 (04) :525-528
[8]   Machine learning a bond order potential model to study thermal transport in WSe2 nanostructures [J].
Chan, Henry ;
Sasikumar, Kiran ;
Srinivasan, Srilok ;
Cherukara, Mathew ;
Narayanan, Badri ;
Sankaranarayanan, Subramanian K. R. S. .
NANOSCALE, 2019, 11 (21) :10381-10392
[9]   Ultralow thermal conductivity in disordered, layered WSe2 crystals [J].
Chiritescu, Catalin ;
Cahill, David G. ;
Nguyen, Ngoc ;
Johnson, David ;
Bodapati, Arun ;
Keblinski, Pawel ;
Zschack, Paul .
SCIENCE, 2007, 315 (5810) :351-353
[10]   Low frequency noise characteristics in multilayer WSe2 field effect transistor [J].
Cho, In-Tak ;
Kim, Jong In ;
Hong, Yoonki ;
Roh, Jeongkyun ;
Shin, Hyeonwoo ;
Baek, Geun Woo ;
Lee, Changhee ;
Hong, Byung Hee ;
Jin, Sung Hun ;
Lee, Jong-Ho .
APPLIED PHYSICS LETTERS, 2015, 106 (02)