Objective: To assess the relative contribution of each myocardial segment to global systolic function during stress using real time three-dimensional echocardiography (RT3DE). Background: During stress, global augmentation in contractility results in an increased stroke volume. The relative contribution of each myocardial segment to these volumetric changes is unknown. Methods: Full volume was acquired using RT3DE at rest and following peak exercise in 22 patients who had no ischemia and no systolic dyssynchrony on two-dimensional (2D) stress echocardiography. The following were calculated at rest and peak stress: end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), relative SV, and relative EF. Results: With stress, an increase in global EDV from 90.8 to 101.1 ml (P < 0.001), SV from 59 to 78.4 ml (P = 0.01), and EF from 65.6 to 78.4% (P = 0.001) was observed. ESV decreased from 31.8 to 22.7 ml (P < 0.001). Segmental analysis revealed significantly higher SV, relative SV, and relative EF for the basal anterior, basal anterolateral, and basal inferolateral segments compared with the apical septum and apical inferior segments at both rest and stress (P < 0.001). The SV, relative SV, and relative EF increased significantly from apex to mid to base at both rest and stress (P < 0.001). Conclusions: The relative volumetric contribution of each myocardial segment to global left ventricular systolic function at rest and stress is not uniform. The basal segments contribute more than the mid and apical segments. Specifically, the basal anterior, basal anterolateral, and basal inferolateral segments contribute the most to augmentation of left ventricular systolic function with exercise. (ECHOCARDIOGRAPHY 2010;27:167-173).