Line spectrum extraction based on autoassociative neural networks

被引:3
作者
Huang, Chunlong [1 ,2 ]
Yang, Kunde [1 ,2 ]
Yang, Qiulong [1 ,2 ]
Zhang, Hao [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Key Lab Ocean Acoust & Sensing, Minist Ind & Informat Technol, Xian 710072, Peoples R China
来源
JASA EXPRESS LETTERS | 2021年 / 1卷 / 01期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1121/10.0003038
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Line spectrum is an important feature for the detection and classification of underwater targets. This letter presents a method for extracting the line spectrum submerged in underwater ambient noise through autoassociative neural networks (AANN). Compared with the traditional methods, the proposed method based on AANN can directly enhance the line spectrum from the raw time-domain noise data without relying on prior information and spectral features. Moreover, the proposed method can suppress the background noise while extracting the line spectrum. Both the numerical simulation and experimental data test results demonstrate that the proposed method provides a good ability to extract the line spectrum from the strong background noise.
引用
收藏
页数:7
相关论文
共 11 条
[1]   Machine learning in acoustics: Theory and applications [J].
Bianco, Michael J. ;
Gerstoft, Peter ;
Traer, James ;
Ozanich, Emma ;
Roch, Marie A. ;
Gannot, Sharon ;
Deledalle, Charles-Alban .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (05) :3590-3628
[2]   Feature extraction using auto-associative neural networks [J].
Kerschen, G ;
Golinval, JC .
SMART MATERIALS AND STRUCTURES, 2004, 13 (01) :211-219
[3]   NONLINEAR PRINCIPAL COMPONENT ANALYSIS USING AUTOASSOCIATIVE NEURAL NETWORKS [J].
KRAMER, MA .
AICHE JOURNAL, 1991, 37 (02) :233-243
[4]   Ship localization in Santa Barbara Channel using machine learning classifiers [J].
Niu, Haiqiang ;
Ozanich, Emma ;
Gerstoft, Peter .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 142 (05) :EL455-EL460
[5]  
Ogden George., 2009, The Journal of the Acoustical Society of America, V126, P2249
[6]  
Wang L, 2012, J ACOUST SOC AM, V131, P3507
[7]  
Yang H, 2016, NOISE CONTROL ENG J, V64, P230
[8]   Deep learning classification for improved bicoherence feature based on cyclic modulation and cross-correlation [J].
Yang, Kunde ;
Zhou, Xingyue .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (04) :2201-2211
[9]   Mapping sea surface observations to spectra of underwater ambient noise through self-organizing map method [J].
Zhang, Ying ;
Yang, Kunde ;
Yang, Qiulong ;
Chen, Cheng .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (02) :EL111-EL116
[10]   Line spectrum detection algorithm based on the phase feature of target radiated noise [J].
Zheng, Enming ;
Yu, Huabing ;
Chen, Xinhua ;
Sun, Changyu .
JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2016, 27 (01) :72-80