Correlation effects on aromaticity of Be32- cluster: A quantum Monte Carlo study

被引:16
|
作者
Brito, B. G. A. [1 ]
Hai, G. -Q. [1 ]
Candido, Ladir [2 ]
机构
[1] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil
基金
巴西圣保罗研究基金会;
关键词
BERYLLIUM CLUSTERS; ELECTRONIC-PROPERTIES; MAXIMUM HARDNESS; METAL; MOLECULES; SYSTEMS; ANTIAROMATICITY; PRINCIPLES; REACTIVITY; PHYSICS;
D O I
10.1016/j.cplett.2013.09.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using diffusion Monte Carlo (DMC) simulation we investigate the electron correlation effects on stability and aromaticity of anionic beryllium Be-3(2-) cluster. The cyclic isomer is energetically more stable than its open linear counterpart by about 0.9, 0.7, and 0.2 eV for Be-3(m-) with m = 1, 2, and 3, respectively. However, electron correlation has larger impact on linear isomers. Based on principles of minimum energy and electrophilicity, and maximum hardness, DMC indicates that Be-3(2) cluster is aromatic. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 110
页数:3
相关论文
共 50 条
  • [1] Quantum Monte Carlo study of the transcorrelated method for correlation factors
    Luo, Hongjun
    Hackbusch, Wolfgang
    Flad, Heinz-Juergen
    MOLECULAR PHYSICS, 2010, 108 (3-4) : 425 - 431
  • [2] Electron Correlation Effects in All-Metal Aromatic Clusters: A Quantum Monte Carlo Study
    Higino Damasceno, J., Jr.
    Teixeira Rabelo, J. N.
    Candido, Ladir
    INORGANIC CHEMISTRY, 2016, 55 (15) : 7442 - 7447
  • [3] Quantum Monte Carlo study of the electron binding energies and aromaticity of small neutral and charged boron clusters
    Isaac Moreira, E. M.
    Brito, B. G. A.
    Higino Damasceno, J., Jr.
    Teixeira Rabelo, J. N.
    Hai, G. -Q.
    Candido, L.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (21)
  • [4] Quantum Monte Carlo with coupled-cluster wave functions
    Roggero, Alessandro
    Mukherjee, Abhishek
    Pederiva, Francesco
    PHYSICAL REVIEW B, 2013, 88 (11)
  • [5] Determinantal quantum Monte Carlo solver for cluster perturbation theory
    Huang, Edwin W.
    Ding, Shuhan
    Liu, Jiarui
    Wang, Yao
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [6] Quantum Monte Carlo study of few-electron concentric double quantum rings
    Colletti, Leonardo
    Malet, Francesc
    Pi, Marti
    Pederiva, Francesco
    PHYSICAL REVIEW B, 2009, 79 (12):
  • [7] Quantum tricriticality in antiferromagnetic Ising model with transverse field: A quantum Monte Carlo study
    Kato, Yasuyuki
    Misawa, Takahiro
    PHYSICAL REVIEW B, 2015, 92 (17)
  • [8] Machine-learning study using improved correlation configuration and application to quantum Monte Carlo simulation
    Tomita, Yusuke
    Shiina, Kenta
    Okabe, Yutaka
    Lee, Hwee Kuan
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [9] Quantum Monte Carlo study of the two-dimensional fermion Hubbard model
    Varney, C. N.
    Lee, C. -R.
    Bai, Z. J.
    Chiesa, S.
    Jarrell, M.
    Scalettar, R. T.
    PHYSICAL REVIEW B, 2009, 80 (07):
  • [10] Quantum Monte Carlo study of the two-dimensional ferromagnet
    Conduit, G. J.
    PHYSICAL REVIEW B, 2013, 87 (18):