Percolative silver nanoplates/PVDF nanocomposites: Bulk and surface electrical conduction

被引:32
作者
Audoit, Jeremie [1 ]
Laffont, Lydia [2 ]
Lonjon, Antoine [1 ]
Dantras, Eric [1 ]
Lacabanne, Colette [1 ]
机构
[1] Univ Toulouse 3, Inst Carnot CIRIMAT, Phys Polymeres, F-31062 Toulouse, France
[2] CIRIMAT Inst Carnot, ENSIACET, F-31077 Toulouse 4, France
关键词
Silver microplates; Polymer matrix; Conductive nanocomposites; Electrical bulk percolation; Electrical surface percolation; 2D/3D percolation; PLASMON RESONANCE; CARBON NANOTUBES; EXCLUDED-VOLUME; AC CONDUCTIVITY; COMPOSITES; GROWTH; SHAPE; NANOPARTICLES; IMPROVEMENT; DISPERSION;
D O I
10.1016/j.polymer.2015.09.062
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Electrically conductive polymer composites have been elaborated by dispersing silver microplates into a polyvinylidene fluoride (PVDF) matrix. Silver microplates have been successfully synthesized. Their mean lateral length is about 1.15 mu m, presenting a moderate aspect ratio (12-25). Synthesis is easily controlled and can produce 1-500 mg depending on the volume and the concentration of the solutions used. Electrical bulk and surface conductivity of the composites containing different filler fractions (4-20 vol.%) have been determined for each sample. Electrical percolation has been observed for each situation and was determined at 5.9 vol.% for bulk conductivity (through the thickness), while the value is shifted to 6.9 vol.% when surface conductivity is considered. The gap between the two values of percolation threshold is attributed to the orientation of fillers. Bulk conductivity and surface resistivity reaches 12.9 S m(-1) and 0.123 Omega/square respectively at filler fraction of 15 vol.%. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 58 条
[1]   EXCLUDED VOLUME AND ITS RELATION TO THE ONSET OF PERCOLATION [J].
BALBERG, I ;
ANDERSON, CH ;
ALEXANDER, S ;
WAGNER, N .
PHYSICAL REVIEW B, 1984, 30 (07) :3933-3943
[2]   DC and AC conductivity of carbon nanotubes-polyepoxy composites [J].
Barrau, S ;
Demont, P ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (14) :5187-5194
[3]   Ultrathin transparent conductive films of polymer-modified multiwalled carbon nanotubes [J].
Bocharova, Vera ;
Kiriy, Anton ;
Oertel, Ulrich ;
Stamm, Manfred ;
Stoffelbach, Francois ;
Jerome, Robert ;
Detrembleur, Christophe .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (30) :14640-14644
[4]   Evolution of dispersion of carbon nanotubes in Polyamide 11 matrix composites as determined by DC conductivity [J].
Carponcin, Delphine ;
Dantras, Eric ;
Aridon, Gwenaelle ;
Levallois, Franck ;
Cadiergues, Laurent ;
Lacabanne, Colette .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (04) :515-520
[5]   CONDUCTIVITY OF A MIXTURE OF CONDUCTING AND INSULATING GRAINS - DIMENSIONALITY EFFECTS [J].
CLERC, JP ;
GIRAUD, G ;
ALEXANDER, S ;
GUYON, E .
PHYSICAL REVIEW B, 1980, 22 (05) :2489-2494
[6]   Broadband ac conductivity of conductor-polymer composites [J].
Connor, MT ;
Roy, S ;
Ezquerra, TA ;
Calleja, FJB .
PHYSICAL REVIEW B, 1998, 57 (04) :2286-2294
[7]   High-performance thermoplastic composites poly(ether ketone ketone)/silver nanowires: Morphological, mechanical and electrical properties [J].
Cortes, Luis Quiroga ;
Lonjon, Antoine ;
Dantras, Eric ;
Lacabanne, Colette .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2014, 391 :106-111
[8]   Simulation and modeling of three-dimensional percolating structures: Case of a latex matrix reinforced by a network of cellulose fibers [J].
Favier, V ;
Dendievel, R ;
Canova, G ;
Cavaille, JY ;
Gilormini, P .
ACTA MATERIALIA, 1997, 45 (04) :1557-1565
[9]   COLUMNAR ORDERING AS AN EXCLUDED-VOLUME EFFECT [J].
FRENKEL, D .
LIQUID CRYSTALS, 1989, 5 (03) :929-940
[10]   Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing [J].
Gao, Chuanbo ;
Lu, Zhenda ;
Liu, Ying ;
Zhang, Qiao ;
Chi, Miaofang ;
Cheng, Quan ;
Yin, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (23) :5629-5633