Characterization of the proline-utilization pathway in Mycobacterium tuberculosis through structural and functional studies

被引:14
作者
Lagautriere, Thomas [1 ,2 ]
Bashiri, Ghader [1 ,2 ]
Paterson, Neil G. [1 ,2 ]
Berney, Michael [3 ]
Cook, Gregory M. [3 ]
Baker, Edward N. [1 ,2 ]
机构
[1] Univ Auckland, Sch Biol Sci, Struct Biol Lab, Auckland 1010, New Zealand
[2] Univ Auckland, Maurice Wilkins Ctr Mol Biodiscovery, Auckland 1010, New Zealand
[3] Univ Otago, Dept Microbiol & Immunol, Dunedin, New Zealand
来源
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY | 2014年 / 70卷
关键词
X-RAY-INTENSITIES; CRYSTAL-STRUCTURE; DELTA(1)-PYRROLINE-5-CARBOXYLIC ACID; PROTEIN-PRODUCTION; DEHYDROGENASE; METABOLISM; SUBSTRATE; METHYLGLYOXAL; DISORDER; KINETICS;
D O I
10.1107/S1399004713034391
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The proline-utilization pathway in Mycobacterium tuberculosis (Mtb) has recently been identified as an important factor in Mtb persistence in vivo, suggesting that this pathway could be a valuable therapeutic target against tuberculosis (TB). In Mtb, two distinct enzymes perform the conversion of proline into glutamate: the first step is the oxidation of proline into Delta(1)-pyrroline-5-carboxylic acid (P5C) by the flavoenzyme proline dehydrogenase (PruB), and the second reaction involves converting the tautomeric form of P5C (glutamate-gamma-semialdehyde) into glutamate using the NAD(+)-dependent Delta(1)-pyrroline-5-carboxylic dehydrogenase (PruA). Here, the three-dimensional structures of Mtb-PruA, determined by X-ray crystallography, in the apo state and in complex with NAD(+) are described at 2.5 and 2.1 angstrom resolution, respectively. The structure reveals a conserved NAD(+)-binding mode, common to other related enzymes. Species-specific conformational differences in the active site, however, linked to changes in the dimer interface, suggest possibilities for selective inhibition of Mtb-PruA despite its reasonably high sequence identity to other PruA enzymes. Using recombinant PruA and PruB, the proline-utilization pathway in Mtb has also been reconstituted in vitro. Functional validation using a novel NMR approach has demonstrated that the PruA and PruB enzymes are together sufficient to convert proline to glutamate, the first such demonstration for monofunctional proline-utilization enzymes.
引用
收藏
页码:968 / 980
页数:13
相关论文
共 50 条
[1]   METABOLISM OF PROLINE AND THE HYDROXYPROLINES [J].
ADAMS, E ;
FRANK, L .
ANNUAL REVIEW OF BIOCHEMISTRY, 1980, 49 :1005-1061
[2]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[3]   Substrate channeling in proline metabolism [J].
Arentson, Benjamin W. ;
Sanyal, Nikhilesh ;
Becker, Donald F. .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2012, 17 :375-388
[4]   Expression, purification and crystallization of native and selenomethionine labeled Mycobacterium tuberculosis FGD1 (Rv0407) using a Mycobacterium smegmatis expression system [J].
Bashiri, Ghader ;
Squire, Christopher J. ;
Baker, Edward N. ;
Moreland, Nicole J. .
PROTEIN EXPRESSION AND PURIFICATION, 2007, 54 (01) :38-44
[5]   Metabolic Engineering of Cofactor F420 Production in Mycobacterium smegmatis [J].
Bashiri, Ghader ;
Rehan, Aisyah M. ;
Greenwood, David R. ;
Dickson, James M. J. ;
Baker, Edward N. .
PLOS ONE, 2010, 5 (12)
[6]   Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia [J].
Berney, Michael ;
Weimar, Marion R. ;
Heikal, Adam ;
Cook, Gregory M. .
MOLECULAR MICROBIOLOGY, 2012, 84 (04) :664-681
[7]   Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia [J].
Berney, Michael ;
Cook, Gregory M. .
PLOS ONE, 2010, 5 (01)
[8]   A structurally conserved water molecule in Rossmann dinucleotide-binding domains [J].
Bottoms, CA ;
Smith, PE ;
Tanner, JJ .
PROTEIN SCIENCE, 2002, 11 (09) :2125-2137
[9]   DIRECT PHASE DETERMINATION BY ENTROPY MAXIMIZATION AND LIKELIHOOD RANKING - STATUS-REPORT AND PERSPECTIVES [J].
BRICOGNE, G .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1993, 49 :37-60
[10]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293