Precise positioning and active vibration isolation using piezoelectric actuator with hysteresis compensation

被引:13
作者
Badel, Adrien [1 ]
Le Breton, Ronan [1 ]
Formosa, Fabien [1 ]
Hanene, Snoussi [1 ]
Lottin, Jacques [1 ]
机构
[1] Univ Savoie, Lab Syst & Mat Mecatron, F-74944 Annecy Le Vieux, France
关键词
Piezoelectric actuator control; vibration isolation; hysteresis modeling and compensation; DESIGN; SYSTEM;
D O I
10.1177/1045389X13489363
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article investigates precise positioning at the micrometer scale using piezoelectric actuators. A special focus is given to the rejection of ambient vibration disturbances. An original experimental setup composed of two superposed piezoelectric actuator stages is used to evaluate the performances of the proposed approach. The bottom one is devoted to the disturbance generation, whereas the upper one allows position tracking and active stabilization. The experimental dynamic and hysteretic characterizations of the top actuator are performed. Based on the identified dynamic model, a linear controller is designed. Its performances are improved with a hysteresis compensation method. Such methods usually imply either simple symmetrical hysteresis (e.g. General Maxwell Slip) or operators able to model asymmetric loops (e.g. Preisach) at the cost of more memory usage and computational time. In the present study, a previously published lightweight asymmetric operator hysteresis is successfully used for the first time within a piezoelectric positioning closed-loop control.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 16 条