Phase Composition and Superplastic Behavior of a Wrought AlCoCrCuFeNi High-Entropy Alloy

被引:112
|
作者
Shaysultanov, D. G. [1 ]
Stepanov, N. D. [1 ]
Kuznetsov, A. V. [1 ]
Salishchev, G. A. [1 ]
Senkov, O. N. [2 ]
机构
[1] Belgorod State Univ, Lab Bulk Nanostructured Mat, Belgorod 308015, Russia
[2] UES Inc, Dayton, OH 45432 USA
关键词
MECHANICAL-PROPERTIES; COMPRESSIVE PROPERTIES; SOLID-SOLUTION; MICROSTRUCTURE; DIFFUSION; TEMPERATURE;
D O I
10.1007/s11837-013-0754-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A cast AlCoCrCuFeNi high-entropy alloy was multiaxially forged at 950A degrees C to produce a fine homogeneous mixture of grains/particles of four different phases with the average size of similar to 2.1 mu m. The forged alloy exhibited unusual superplastic behavior accompanied by a pronounced softening stage, followed by a steady-state flow stage, during tensile deformation at temperatures of 800A degrees C-1000A degrees C and at strain rates of 10(-4)-10(-1) s(-1). Despite the softening stage, no noticeable strain localization was observed and a total elongation of up to 1240% was obtained. A detailed analysis of the phase composition and microstructure of the alloy before and after superplastic deformation was conducted, the strain rate and temperature dependences of the flow stress were determined at different stages of the superplastic deformation, and the relationships between the microstructure and properties were identified and discussed.
引用
收藏
页码:1815 / 1828
页数:14
相关论文
共 50 条
  • [1] Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy
    Tang, Zhi
    Yuan, Tao
    Tsai, Che-Wei
    Yeh, Jien-Wei
    Lundin, Carl D.
    Liaw, Peter K.
    ACTA MATERIALIA, 2015, 99 : 247 - 258
  • [2] High-temperature Oxidation Behavior of AlCoCrCuFeNi High-Entropy Alloy by Selective Laser Melting
    Ni Haohan
    Zeng Qi
    Zhang Kai
    Tian Yanzhong
    Wang Jiangwei
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (06) : 2302 - 2308
  • [3] Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy
    Singh, S.
    Wanderka, N.
    Murty, B. S.
    Glatzel, U.
    Banhart, J.
    ACTA MATERIALIA, 2011, 59 (01) : 182 - 190
  • [4] Structure and magnetism of AlCoCrCuFeNi high-entropy alloy
    Oboz, M.
    Zajdel, P.
    Zubko, M.
    Swiec, P.
    Szubka, M.
    Kadziolka-Gawel, M.
    Maximenko, A.
    Trump, B. A.
    Yakovenko, A. A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 589
  • [5] On the elemental effect of AlCoCrCuFeNi high-entropy alloy system
    Tung, Chung-Chin
    Yeh, Jien-Wei
    Shun, Tao-tsung
    Chen, Swe-Kai
    Huang, Yuan-Sheng
    Chen, Hung-Cheng
    MATERIALS LETTERS, 2007, 61 (01) : 1 - 5
  • [6] Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions
    Kuznetsov, A. V.
    Shaysultanov, D. G.
    Stepanov, N. D.
    Salishchev, G. A.
    Senkov, O. N.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 533 : 107 - 118
  • [7] Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy
    Zhang, C.
    Wu, G. F.
    Dai, P. Q.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (05) : 1918 - 1925
  • [8] Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy
    Huang, Shuo
    Vida, Adam
    Molnar, David
    Kadas, Krisztina
    Varga, Lajos Karoly
    Holmstrom, Erik
    Vitos, Levente
    APPLIED PHYSICS LETTERS, 2015, 107 (25)
  • [9] Tribo-corrosion behavior of VAlTiCrCu high-entropy alloy film
    Chen, Shengyu
    Cai, Zhaobing
    Lu, Zhaoxia
    Pu, Jibin
    Chen, Ran
    Zheng, Shujing
    Mao, Chunlong
    Chen, Shanjun
    MATERIALS CHARACTERIZATION, 2019, 157
  • [10] Structure, Phase Composition and Defect Substructure of High-Entropy Alloy Ribbon
    Ivanov, Yu. F.
    Gromov, V. E.
    Litovchenko, I. Yu.
    Kolubaev, E. A.
    Potekaev, A. I.
    Semin, A. P.
    Borovskii, S. V.
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (01) : 34 - 40