Cell polarization in budding and fission yeasts

被引:88
|
作者
Martin, Sophie G. [1 ]
Arkowitz, Robert A. [2 ,3 ,4 ]
机构
[1] Univ Lausanne, Fac Biol & Med, Dept Fundamental Microbiol, CH-1015 Lausanne, Switzerland
[2] Univ Nice Sophia Antipolis, Inst Biol Valrose, F-06189 Nice, France
[3] CNRS, UMR7277, Inst Biol Valrose, Nice, France
[4] INSERM, UMR1091, Inst Biol Valrose, Nice, France
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
fungi; yeast; polarization; Rho GTPases; cytoskeleton; membrane trafficking; BUD-SITE SELECTION; GTPASE-ACTIVATING PROTEIN; NUCLEOTIDE EXCHANGE FACTOR; CYCLE-SPECIFIC LOCALIZATION; FAMILY KINASE POM1; RHO-TYPE GTPASES; PLASMA-MEMBRANE; SACCHAROMYCES-CEREVISIAE; SCHIZOSACCHAROMYCES-POMBE; ACTIN CYTOSKELETON;
D O I
10.1111/1574-6976.12055
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Polarization is a fundamental cellular property, which is essential for the function of numerous cell types. Over the past three to four decades, research using the best-established yeast systems in cell biological research, Saccharomyces cerevisiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has brought to light fundamental principles governing the establishment and maintenance of a polarized, asymmetric state. These two organisms, though both ascomycetes, are evolutionarily very distant and exhibit distinct shapes and modes of growth. In this review, we compare and contrast the two systems. We first highlight common cell polarization pathways, detailing the contribution of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and protein scaffolds. We then contrast the major differences between the two organisms, describing their distinct strategies in growth site selection and growth zone dimensions and compartmentalization, which may be the basis for their distinct shapes.
引用
收藏
页码:228 / 253
页数:26
相关论文
共 50 条
  • [31] Functional conservation and cell cycle localization of the Nhp2 core component of H plus ACA snoRNPs in fission and budding yeasts
    Maiorano, D
    Brimage, LJE
    Leroy, D
    Kearsey, SE
    EXPERIMENTAL CELL RESEARCH, 1999, 252 (01) : 165 - 174
  • [32] Mechanics of budding and of conjugation in yeasts
    Nickerson, WJ
    JOURNAL OF CELLULAR AND COMPARATIVE PHYSIOLOGY, 1942, 19 (03): : 379 - 382
  • [33] BUDDING AND FISSION OF VESICLES
    DOBEREINER, HG
    KAS, J
    NOPPL, D
    SPRENGER, I
    SACKMANN, E
    BIOPHYSICAL JOURNAL, 1993, 65 (04) : 1396 - 1403
  • [35] MATHEMATICAL-MODEL OF THE CELL-CYCLE REGULATION IN BUDDING YEASTS
    PRIKRYLOVA, D
    BUCANEK, D
    BIOMEDICA BIOCHIMICA ACTA, 1990, 49 (8-9) : 733 - 736
  • [36] Mechanochemical modeling of morphogenesis in cell polarization for budding yeast
    Xie, Jun
    Lo, Wing-Cheong
    APPLIED MATHEMATICAL MODELLING, 2024, 131 : 615 - 649
  • [37] Functional diversity of silencers in budding yeasts
    Sjöstrand, JOO
    Kegel, A
    Aström, SU
    EUKARYOTIC CELL, 2002, 1 (04) : 548 - 557
  • [38] Telomere length regulation in budding yeasts
    Malyavko, Alexander N.
    Parfenova, Yuliya Y.
    Zvereva, Maria I.
    Dontsova, Olga A.
    FEBS LETTERS, 2014, 588 (15) : 2530 - 2536
  • [39] The core meiotic transcriptome in budding yeasts
    Michael Primig
    Roy M. Williams
    Elizabeth A. Winzeler
    Gela G. Tevzadze
    Andrew R. Conway
    Seung Y. Hwang
    Ronald W. Davis
    Rochelle Easton Esposito
    Nature Genetics, 2000, 26 : 415 - 423
  • [40] The core meiotic transcriptome in budding yeasts
    Primig, M
    Williams, RM
    Winzeler, EA
    Tevzadze, GG
    Conway, AR
    Hwang, SY
    Davis, RW
    Esposito, RE
    NATURE GENETICS, 2000, 26 (04) : 415 - 423