Chronic renal injury can be mediated by angiotensin II (ANG II) and prostanoids through hemodynamic and inflammatory mechanisms and attenuated by individual suppression of these mediators. In rats with 5/6 renal ablation (Nx), we investigated 1) the intrarenal distribution of COX-2, ANG II, and the AT(1) receptor (AT(1)R); 2) the renoprotective and antiinflammatory effects of an association between the AT(1)R blocker, losartan (Los), and the gastric sparing anti-inflammatory nitroflurbiprofen (NOF). Adult male Munich-Wistar rats underwent Nx or sham operation ( S), remaining untreated for 30 days, after which renal structure was examined in 12 Nx rats ( Nx(pre)). The remaining rats were followed during an additional 90 days, distributed among 4 treatment groups: Nx(V) (vehicle), Nx(Los) (Los), Nx(NOF) (NOF), and Nx(Los/ NOF) (Los/NOF). Nx(pre) rats exhibited marked albuminuria, hypertension, glomerulosclerosis, interstitial expansion, and macrophage infiltration, accompanied by abnormal glomerular, vascular, and interstitial COX-2 expression. ANG II appeared in interstitial cells, in contrast to S, in which ANG II was virtually confined to afferent arterioles. Intrarenal AT(1)R distribution shifted from mostly tubular in S to predominantly interstitial in Nxpre. All these changes were aggravated at 120 days and attenuated by Los and NOF monotherapies. Los/NOF treatment arrested renal structural injury and ANG II expression and reversed hypertension, albuminuria, and renal inflammation. In conclusion, abnormal expression of COX-2, ANG II, and AT(1)R may be key to development of renal injury in Nx. Concomitant COX-2 inhibition and AT(1)R blockade arrested renal injury and may represent a useful strategy in the treatment of chronic nephropathies.