Near-Optimal Mean Value Estimates for Multidimensional Weyl Sums

被引:24
作者
Parsell, Scott T. [1 ]
Prendiville, Sean M. [2 ]
Wooley, Trevor D. [2 ]
机构
[1] W Chester Univ, Dept Math, W Chester, PA 19383 USA
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
VALUE THEOREM; POINTS;
D O I
10.1007/s00039-013-0242-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain sharp estimates for multidimensional generalisations of Vinogradov's mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed.
引用
收藏
页码:1962 / 2024
页数:63
相关论文
共 23 条
[1]  
Arkhipov G.I., 1980, T MIAN, V151, P1
[2]  
Arkhipov GI, 2004, DEGRUYTER EXPOS MATH, V39, P1, DOI 10.1515/9783110197983
[3]  
Baker RC, 1986, LONDON MATH SOC MONO, V1
[6]  
Linnik U. V., 1943, Rec. Math. [Mat. Sbornik] N.S, V12, P28
[7]  
Liu Y.-R., VINOGRADOVS MEAN VAL
[8]   HUA-TYPE ITERATION FOR MULTIDIMENSIONAL WEYL SUMS [J].
Parsell, Scott T. .
MATHEMATIKA, 2012, 58 (02) :209-224
[9]   A generalization of Vinogradov's mean value theorem [J].
Parsell, ST .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :1-32
[10]  
Parsell ST, 2001, J REINE ANGEW MATH, V532, P47