Adsorption-desorption phenomena and diffusion of neutral particles in the hyperbolic regime

被引:2
|
作者
Sapora, A. [1 ,2 ]
Codegone, M. [1 ,3 ]
Barbero, G. [1 ,4 ]
Evangelista, L. R. [5 ]
机构
[1] Turin Polytech Univ Tashkent, Tashkent 100095, Uzbekistan
[2] Politecn Torino, Dept Struct Bldg & Geotech Engn, I-10129 Turin, Italy
[3] Politecn Torino, Dept Math Sci, I-10129 Turin, Italy
[4] Politecn Torino, Dept Appl Sci & Technol, I-10129 Turin, Italy
[5] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
基金
欧洲研究理事会;
关键词
diffusion; adsorption; hyperbolic equation; TIME RANDOM-WALKS; FRACTIONAL DIFFUSION; ANOMALOUS TRANSPORT; EQUATIONS; DYNAMICS;
D O I
10.1088/1751-8113/47/1/015002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The adsorption phenomenon of neutral particles from the limiting surfaces of the sample in the Langmuir approximation is investigated. The diffusion equation regulating the redistribution of particles in the bulk is assumed to be of hyperbolic type, in order to take into account the finite velocity of propagation of the density variations. We show that in this framework the condition on the conservation of the number of particles gives rise to a nonlocal boundary condition. We solve the partial differential equation relevant to the diffusion of particles by means of the separation of variables, and present how it is possible to obtain approximated eigenvalues contributing to the solution. The same problem is faced numerically by a finite difference algorithm. The time dependence of the surface density of adsorbed particles is deduced by means of the kinetic equation at the interface. The predicted non- monotonic behavior of the surface density versus the time is in agreement with experimental observations reported in the literature, and is related to the finite velocity of propagation of the density variations.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Diffusion and adsorption-desorption phenomena in confined systems with periodically varying medium
    Fernandes, M. C.
    Lenzi, E. K.
    Evangelista, L. R.
    Li, Q.
    Zola, R. S.
    de Souza, R. F.
    CHEMICAL ENGINEERING SCIENCE, 2021, 233
  • [2] Frequency dispersion in the fractional Langmuir approximation for the adsorption-desorption phenomena
    Barbero, Giovanni
    Evangelista, Luiz Roberto
    Lenzi, Ervin K.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2238):
  • [3] Non-Markovian diffusion and the adsorption-desorption process
    Lenzi, E. K.
    Yednak, C. A. R.
    Evangelista, L. R.
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [4] Adsorption-desorption kinetics of surfactants at liquid surfaces
    He, Yunfei
    Yazhgur, Pavel
    Salonen, Anniina
    Langevin, Dominique
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2015, 222 : 377 - 384
  • [5] Influence of adsorption-desorption phenomena on pesticide runoff measured under controlled conditions
    Dur, JC
    Gouy, V
    Calvet, R
    Belamie, R
    Chaplain, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE A-SCIENCES DE LA TERRE ET DES PLANETES, 1998, 327 (06): : 405 - 411
  • [6] Monomer Adsorption-Desorption Processes
    Ke Jian-Hong
    Lin Zhen-Quan
    Chen Xiao-Shuang
    CHINESE PHYSICS LETTERS, 2009, 26 (05)
  • [7] Adsorption-desorption phenomena of water vapor on a superabsorbent polymer partially crosslinked with potassium
    Bakass, M.
    Bahaj, H.
    Benaddi, R.
    Bayane, C.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2011, 106 (03) : 945 - 952
  • [8] Diffusion-controlled adsorption-desorption of C6 hydrocarbons by multiwall carbon nanotubes
    Zhokh, Alexey
    Serebrii, Tamila
    Strizhak, Peter
    CHEMICAL PHYSICS LETTERS, 2022, 805
  • [9] Adsorption-desorption kinetics of the monomer-dimer mixture
    Boscoboinik, J. A.
    Manzi, S. J.
    Pereyra, V. D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (07) : 1317 - 1328
  • [10] Adsorption-desorption of heavy metal ions
    Mishra, S. P.
    CURRENT SCIENCE, 2014, 107 (04): : 601 - 612