Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

被引:12
|
作者
You, Jiangfeng [1 ]
Xin, Ling [1 ]
Yu, Xiao [1 ]
Zhou, Xiang [1 ]
Liu, Yong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2018年 / 124卷 / 03期
基金
中国国家自然科学基金;
关键词
LITHIUM STORAGE; ELECTROCHEMICAL PERFORMANCE; INTERCALATION; MORPHOLOGY; NANOSHEETS; BAMOO4; OXIDE;
D O I
10.1007/s00339-018-1689-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge-discharge cycles at a current density of 200 mA/g, showing good cycling performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Strain-Enhanced Li Storage and Diffusion on the Graphyne as the Anode Material in the Li-Ion Battery
    Zhang, Quyue
    Tang, Chunmei
    Zhu, Weihua
    Cheng, Chun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (40) : 22838 - 22848
  • [32] Theoretical study of thiophene-inserted COF as high performance anode material for Li-ion battery
    Chen, Liusong
    Wang, Yue
    Wang, Hong
    Yang, Yingying
    Li, Jiewei
    CHEMICAL PHYSICS LETTERS, 2021, 783
  • [33] Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode
    Sun, Chunwen
    Rajasekhara, Shreyas
    Goodenough, John B.
    Zhou, Feng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (07) : 2132 - 2135
  • [34] Magnetite nanoparticles embedded on reduced graphene oxide as an anode material for high capacity and long cycle-life Li-ion battery
    Jalilzadeh, Hassan
    Outokesh, Mohammad
    Shafiekhani, Azizollah
    Hosseinpour, Morteza
    Tayyebi, Ahmad
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [35] Interpenetrated 3D porous silicon as high stable anode material for Li-Ion battery
    Liu, Yanxia
    Qin, Lijuan
    Liu, Fan
    Fan, Yameng
    Ruan, Jingjing
    Zhang, Suojiang
    JOURNAL OF POWER SOURCES, 2018, 406 : 167 - 175
  • [36] Mesoporous carbon-titania nanocomposites for high-power Li-ion battery anode material
    Ishii, Yosuke
    Kanamori, Yusuke
    Kawashita, Takehiro
    Mukhopadhyay, Indrajit
    Kawasaki, Shinji
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, 71 (04) : 511 - 514
  • [37] Porous ZnFe2O4 nanospheres as anode materials for Li-ion battery with high performance
    Qu, Yue
    Zhang, Dong
    Wang, Xue
    Qiu, Hailong
    Zhang, Tong
    Zhang, Min
    Tian, Ge
    Yue, Huijuan
    Feng, Shouhua
    Chen, Gang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 721 : 697 - 704
  • [38] High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries
    Nayak, Prasant Kumar
    Levi, Elena
    Grinblat, Judith
    Levi, Mikhael
    Markovsky, Boris
    Munichandraiah, N.
    Sun, Yang Kook
    Aurbach, Doron
    CHEMSUSCHEM, 2016, 9 (17) : 2404 - 2413
  • [39] Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries
    Kim, Min Gyu
    Cho, Jaephil
    ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (10) : 1497 - 1514
  • [40] Crystallinity-dependent capacity of a LiBC anode material in Li-ion batteries
    Jia, Jianfeng
    Chen, Shaorui
    Yang, Qianwen
    Feng, Xiang
    Li, De
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (44) : 28176 - 28184