Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

被引:12
|
作者
You, Jiangfeng [1 ]
Xin, Ling [1 ]
Yu, Xiao [1 ]
Zhou, Xiang [1 ]
Liu, Yong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2018年 / 124卷 / 03期
基金
中国国家自然科学基金;
关键词
LITHIUM STORAGE; ELECTROCHEMICAL PERFORMANCE; INTERCALATION; MORPHOLOGY; NANOSHEETS; BAMOO4; OXIDE;
D O I
10.1007/s00339-018-1689-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge-discharge cycles at a current density of 200 mA/g, showing good cycling performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Scalable synthesis of NiMoO4 microspheres with numerous empty nanovoids as an advanced anode material for Li-ion batteries
    Park, Jin-Sung
    Cho, Jung Sang
    Kang, Yun Chan
    JOURNAL OF POWER SOURCES, 2018, 379 : 278 - 287
  • [12] Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposite as anode material of Li-ion battery
    Huang, Guochuang
    Chen, Tao
    Wang, Zhen
    Chang, Kun
    Chen, Weixiang
    JOURNAL OF POWER SOURCES, 2013, 235 : 122 - 128
  • [13] Sn Embedded Li4Ti5O12/C Composite as a High Capacity Anode Material for Li-ion Battery
    Zeng, Tianbiao
    Hu, Xuebu
    Ji, Penghui
    Peng, Qimeng
    Shang, Biao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (12): : 10199 - 10209
  • [14] Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries
    Mei, Riguo
    Song, Xiaorui
    Hu, Yan
    Yang, Yanfeng
    Zhang, Jingjie
    ELECTROCHIMICA ACTA, 2015, 153 : 540 - 545
  • [15] Facile electrodeposition of high-density CuCo2O4 nanosheets as a high-performance Li-ion battery anode material
    Pawar, S. M.
    Pawar, B. S.
    Hou, Bo
    Ahmed, A. T. A.
    Chavan, H. S.
    Jo, Yongcheol
    Cho, Sangeun
    Kim, Jongmin
    Seo, Jiwoo
    Cha, SeungNam
    Inamdar, A. I.
    Kim, Hyungsang
    Im, Hyunsik
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 69 : 13 - 17
  • [16] Graphene-integratedCuCo2S4microspheres as a sustainable anode material for high-performance Li-ion batteries
    Ahmed, Abu Talha Aqueel
    Hou, Bo
    Pawar, S. M.
    Kim, Hyungsang
    Im, Hyunsik
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (02) : 1613 - 1626
  • [17] Cobalt oxide thin films for high capacity and stable Li-ion battery anode
    Varghese, Anto P.
    Nair, Shantikumar
    Santhanagopalan, Dhamodaran
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (02) : 513 - 518
  • [18] Nanoribbons of SnO2 as a high performance Li-ion battery anode material
    Faramarzi, Mojtaba Sadati
    Abnavi, Amin
    Ghasemi, Shahnaz
    Sanaee, Zeinab
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06):
  • [19] Anode material NbO for Li-ion battery and its electrochemical properties
    Li, Jian
    Liu, Wen-Wen
    Zhou, Hong-Ming
    Liu, Zhong-Zhong
    Chen, Bao-Rong
    Sun, Wen-Jiao
    RARE METALS, 2018, 37 (02) : 118 - 122
  • [20] Low temperature synthesis of NiO/Co3O4 composite nanosheets as high performance Li-ion battery anode materials
    Liang QingQin
    Li YueMing
    Li JingHong
    CHINESE SCIENCE BULLETIN, 2012, 57 (32): : 4195 - 4198