Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage

被引:193
作者
Li, Daohao [1 ]
Lv, Chunxiao [1 ]
Liu, Long [1 ]
Xia, Yanzhi [1 ]
She, Xilin [1 ]
Guo, Shaojun [2 ]
Yang, Dongjiang [1 ,3 ]
机构
[1] Qingdao Univ, Collaborat Innovat Ctr Marine Biomass Fibers Mat, Coll Chem & Environm Engn, Qingdao 266071, Peoples R China
[2] Los Alamos Natl Lab, Phys Chem & Appl Spect, Los Alamos, NM 87545 USA
[3] Griffith Univ, QMNC, Brisbane, Qld 4111, Australia
基金
中国国家自然科学基金;
关键词
PERFORMANCE ANODE MATERIALS; ELECTRODE MATERIAL; GRAPHENE; CONVERSION; NANOCOMPOSITE; CONSTRUCTION; NANOSHEETS; NANOTUBES; FIBERS; SHEETS;
D O I
10.1021/acscentsci.5b00191
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (similar to 10-40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g(-1) at 1 A g(-1), good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g(-1) at 1 A g(-1) and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 47 条
  • [1] Carbons and Electrolytes for Advanced Supercapacitors
    Beguin, Francois
    Presser, Volker
    Balducci, Andrea
    Frackowiak, Elzbieta
    [J]. ADVANCED MATERIALS, 2014, 26 (14) : 2219 - 2251
  • [2] Molecular basis of Ca2+-induced gelation in alginates and pectins:: The egg-box model revisited
    Braccini, I
    Pérez, S
    [J]. BIOMACROMOLECULES, 2001, 2 (04) : 1089 - 1096
  • [3] Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors
    Chen, Li-Feng
    Huang, Zhi-Hong
    Liang, Hai-Wei
    Gao, Huai-Ling
    Yu, Shu-Hong
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) : 5104 - 5111
  • [4] Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose
    Chen, Li-Feng
    Huang, Zhi-Hong
    Liang, Hai-Wei
    Yao, Wei-Tang
    Yu, Zi-You
    Yu, Shu-Hong
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) : 3331 - 3338
  • [5] Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors
    Chen, Li-Feng
    Zhang, Xu-Dong
    Liang, Hai-Wei
    Kong, Mingguang
    Guan, Qing-Fang
    Chen, Ping
    Wu, Zhen-Yu
    Yu, Shu-Hong
    [J]. ACS NANO, 2012, 6 (08) : 7092 - 7102
  • [6] A Nitrogen-Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity
    Chen, Ping
    Xiao, Tian-Yuan
    Qian, Yu-Hong
    Li, Shan-Shan
    Yu, Shu-Hong
    [J]. ADVANCED MATERIALS, 2013, 25 (23) : 3192 - 3196
  • [7] Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials
    Chen, Yuming
    Li, Xiaoyan
    Zhou, Xiangyang
    Yao, Haimin
    Huang, Haitao
    Mai, Yiu-Wing
    Zhou, Limin
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (08) : 2689 - 2696
  • [8] Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries
    Chen, Yuming
    Li, Xiaoyan
    Park, Kyusung
    Song, Jie
    Hong, Jianhe
    Zhou, Limin
    Mai, Yiu-Wing
    Huang, Haitao
    Goodenough, John B.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (44) : 16280 - 16283
  • [9] Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction
    Chung, Hoon T.
    Won, Jong H.
    Zelenay, Piotr
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [10] Carbon Nanomaterials for Advanced Energy Conversion and Storage
    Dai, Liming
    Chang, Dong Wook
    Baek, Jong-Beom
    Lu, Wen
    [J]. SMALL, 2012, 8 (08) : 1130 - 1166