Parametric and penalized generalized survival models

被引:53
作者
Liu, Xing-Rong [1 ]
Pawitan, Yudi [1 ]
Clements, Mark [1 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, POB 281, SE-17177 Stockholm, Sweden
关键词
Generalized survival models; link functions; penalized likelihood; smooth function; survival data; MAXIMUM-LIKELIHOOD-ESTIMATION; REGRESSION-MODELS; INTERVAL; TESTS;
D O I
10.1177/0962280216664760
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
We describe generalized survival models, where g(S(t|z)), for link function g, survival S, time t, and covariates z, is modeled by a linear predictor in terms of covariate effects and smooth time effects. These models include proportional hazards and proportional odds models, and extend the parametric Royston-Parmar models. Estimation is described for both fully parametric linear predictors and combinations of penalized smoothers and parametric effects. The penalized smoothing parameters can be selected automatically using several information criteria. The link function may be selected based on prior assumptions or using an information criterion. We have implemented the models in R. All of the penalized smoothers from the mgcv package are available for smooth time effects and smooth covariate effects. The generalized survival models perform well in a simulation study, compared with some existing models. The estimation of smooth covariate effects and smooth time-dependent hazard or odds ratios is simplified, compared with many non-parametric models. Applying these models to three cancer survival datasets, we find that the proportional odds model is better than the proportional hazards model for two of the datasets.
引用
收藏
页码:1531 / 1546
页数:16
相关论文
共 43 条
  • [21] Further development of flexible parametric models for survival analysis
    Lambert, Paul C.
    Royston, Patrick
    [J]. STATA JOURNAL, 2009, 9 (02) : 265 - 290
  • [22] Representation of exposures in regression analysis and interpretation of regression coefficients: basic concepts and pitfalls
    Leffondre, Karen
    Jager, Kitty J.
    Boucquemont, Julie
    Stel, Vianda S.
    Heinze, Georg
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2014, 29 (10) : 1806 - 1814
  • [23] Lin DY, 1996, SCAND J STAT, V23, P157
  • [24] Maximum likelihood estimation in the proportional odds model
    Murphy, SA
    Rossini, AJ
    vanderVaart, AW
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 968 - 976
  • [25] GENERALIZED LINEAR MODELS
    NELDER, JA
    WEDDERBURN, RW
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1972, 135 (03): : 370 - +
  • [26] Nocedal J, 2006, SPRINGER SER OPER RE, P1, DOI 10.1007/978-0-387-40065-5
  • [27] Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO
  • [28] 2
  • [29] Pregibon D., 1980, Journal of the Royal Statistical Society. Series C (Applied Statistics), V29, P15, DOI DOI 10.2307/2346405
  • [30] PRENTICE RL, 1973, BIOMETRIKA, V60, P279