Solitonic interaction of a variable-coefficient (2+1)-dimensional generalized breaking soliton equation

被引:9
作者
Qin, Yi [1 ,2 ,4 ]
Gao, Yi-Tian [1 ,2 ,3 ]
Shen, Yu-Jia [1 ,2 ]
Sun, Yu-Hao [1 ,2 ]
Meng, Gao-Qing [1 ,2 ]
Yu, Xin [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[4] Shanghai Aircraft Customer Serv Co Ltd, Flight Training Dept, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
BACKLUND TRANSFORMATION; MODEL;
D O I
10.1088/0031-8949/88/04/045004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In fluids, Korteweg-de Vries-type equations are used to describe certain nonlinear phenomena. Studied in this paper is a variable-coefficient (2 + 1)-dimensional generalized breaking soliton equation, which models the interactions of Riemann waves with long waves. By virtue of the Bell-polynomial approach, bilinear forms of such an equation are obtained. N-soliton solutions are constructed in terms of the exponential functions and Wronskian determinant, respectively. Solitonic propagation and interaction are discussed with the following conclusions: (i) the appearance of characteristic lines such as the periodic and parabolic shapes depends on the form of the variable coefficients; and (ii) interactions of two solitons and three solitons are shown to be elastic.
引用
收藏
页数:7
相关论文
共 39 条
  • [1] Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
  • [2] Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
  • [3] EVOLUTION OF PACKETS OF WATER-WAVES
    ABLOWITZ, MJ
    SEGUR, H
    [J]. JOURNAL OF FLUID MECHANICS, 1979, 92 (JUN) : 691 - 715
  • [4] Ames W.F., 1967, Nonlinear Partial Differential Equations
  • [5] BOGOYAVLENSKII OI, 1990, USP MAT NAUK, V45, P17
  • [6] Chen Y, 2003, COMMUN THEOR PHYS, V40, P137
  • [7] Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii's breaking soliton equation in (2+1) dimensions
    Fan, Engui
    Hon, Y. C.
    [J]. PHYSICAL REVIEW E, 2008, 78 (03):
  • [8] N-SOLITON-LIKE SOLUTIONS AND BACKLUND TRANSFORMATIONS FOR A NON-ISOSPECTRAL AND VARIABLE-COEFFICIENT MODIFIED KORTEWEG-DE VRIES EQUATION
    Feng, Qian
    Gao, Yi-Tian
    Meng, Xiang-Hua
    Yu, Xin
    Sun, Zhi-Yuan
    Xu, Tao
    Tian, Bo
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (05): : 723 - 733
  • [9] NONLINEAR SCHRODINGER EQUATION FOR LANGMUIR WAVES
    FRIED, BD
    ICHIKAWA, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 34 (04) : 1073 - 1082
  • [10] Gai X L, 2011, J PHYS A, V43