Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice

被引:112
|
作者
Ke, Xinxin [1 ]
Walker, Alesia [2 ]
Haange, Sven-Bastiaan [3 ]
Lagkouvardos, Ilias [4 ]
Liu, Yuwen [5 ,8 ]
Schmitt-Kopplin, Philippe [2 ,4 ,6 ]
Von Bergen, Martin [3 ]
Jehmlich, Nico [3 ]
He, Xin [5 ]
Clavel, Thomas [4 ,7 ]
Cheung, Peter C. K. [1 ]
机构
[1] Chinese Univ Hong Kong, Sch Life Sci, Shatin, Hong Kong, Peoples R China
[2] HelmholtzZentrum Munchen, Res Unit Analyt BioGeoChem, Neuherberg, Germany
[3] UFZ Helmholtz Ctr Environm Res, Dept Mol Syst Biol, Leipzig, Germany
[4] Tech Univ Munich, ZIEL Inst Food & Hlth, Freising Weihenstephan, Germany
[5] Univ Chicago, Dept Human Genet, Chicago, IL 60615 USA
[6] Tech Univ Munich, Chair Analyt Food Chem, Freising Weihenstephan, Germany
[7] Univ Hosp RWTH Aachen, Inst Med Microbiol, Funct Microbiome Res Grp, Aachen, Germany
[8] Chinese Acad Agr Sci, Agr Genome Inst Shenzhen, Dept Pig Genom Design & Breeding, Shenzhen 518124, Peoples R China
来源
MOLECULAR METABOLISM | 2019年 / 22卷
关键词
Dietary intervention; Gut microbiota; High-fat diet; Obesity; Synbiotics; HIGH-FAT-DIET; SP-NOV; BILE-ACIDS; GENOME SEQUENCE; PROBIOTICS; OVERWEIGHT; OLIGOFRUCTOSE; INTERVENTION; PREBIOTICS; PHYSIOLOGY;
D O I
10.1016/j.molmet.2019.01.012
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: The gut microbiota is an important influencing factor of metabolic health. Although dietary interventions with probiotics, prebiotics, and synbiotics can be effective means to regulate obesity and associated comorbidities, the underlying shifts in gut microbial communities, especially at the functional level, have not been characterized in great details. In this study, we sought to investigate the effects of synbiotics on the regulation of gut microbiota and the alleviation of high-fat diet (HFD)-induced metabolic disorders in mice. Methods: Specific pathogen-free (SPF) male C57BL/6J mice were fed diets with either 10% (normal diet, ND) or 60% (high-fat diet, HFD) of total calories from fat (lard). Dietary interventions in the HFD-fed mice included (i) probiotic (Bifidobacterium animalis subsp. lactis and Lactobacillus paracasei subsp. paracasei DSM 46331), (ii) prebiotic (oat beta-glucan), and (iii) synbiotic (a mixture of i and ii) treatments for 12 weeks. Besides detailed characterization of host metabolic parameters, a multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing, metaproteomics and targeted metabolomics analysis. Results: The synbiotic intervention significantly reduced body weight gain and alleviated features of metabolic complications. At the phylogenetic level, the synbiotic treatment significantly reversed HFD-induced changes in microbial populations, both in terms of richness and the relative abundance of specific taxa. Potentially important species such as Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of the synbiotic were identified. At the functional level, short-chain fatty acid and bile acid profiles revealed that all dietary interventions significantly restored cecal levels of acetate, propionate, and butyrate, while the synbiotic treatment reduced the bile acid pools most efficiently. Metaproteomics revealed that the effects of the synbiotic intervention might be mediated through metabolic pathways involved in carbohydrate, amino acid, and energy metabolisms. Conclusions: Our results suggested that dietary intervention using the novel synbiotic can alleviate HFD-induced weight gain and restore gut microbial ecosystem homeostasis phylogenetically and functionally. (C) 2019 The Authors. Published by Elsevier GmbH.
引用
收藏
页码:96 / 109
页数:14
相关论文
共 50 条
  • [31] Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice
    Madsen, Mette Simone Aae
    Holm, Jacob Bak
    Palleja, Albert
    Wismann, Pernille
    Fabricius, Katrine
    Rigbolt, Kristoffer
    Mikkelsen, Martin
    Sommer, Morten
    Jelsing, Jacob
    Nielsen, Henrik Bjorn
    Vrang, Niels
    Hansen, Henrik H.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [32] Intermittent Fasting Improves Lipid Metabolism Through Changes in Gut Microbiota in Diet-Induced Obese Mice
    Deng, Ya
    Liu, Wanjun
    Wang, Jianqing
    Yu, Jun
    Yang, Li-qi
    MEDICAL SCIENCE MONITOR, 2020, 26
  • [33] Effect of okra fruit powder supplementation on metabolic syndrome and gut microbiota diversity in high fat diet-induced obese mice
    Zhang, Jin
    Zhao, Yan
    Ren, Daoyuan
    Yang, Xingbin
    FOOD RESEARCH INTERNATIONAL, 2020, 130
  • [34] Enteropeptidase inhibition improves obesity by modulating gut microbiota composition and enterobacterial metabolites in diet-induced obese mice
    Sugama, Jun
    Moritoh, Yusuke
    Yashiro, Hiroaki
    Tsuchimori, Kazue
    Watanabe, Masanori
    PHARMACOLOGICAL RESEARCH, 2021, 163
  • [35] Artemisia sphaerocephala Krasch polysaccharide mediates lipid metabolism and metabolic endotoxaemia in associated with the modulation of gut microbiota in diet-induced obese mice
    Li, Junjun
    Pang, Bing
    Shao, Dongyan
    Jiang, Chunmei
    Hu, Xinzhong
    Shi, Junling
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 147 (147) : 1008 - 1017
  • [36] Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism
    Li Chen
    Xian-jun Wang
    Jie-xin Chen
    Jing-cheng Yang
    Xian-Bin Ling Lin
    Yong-song Cai
    Diabetology & Metabolic Syndrome, 15
  • [37] Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism
    Chen, Li
    Wang, Xian-jun
    Chen, Jie-xin
    Yang, Jing-cheng
    Lin, Ling
    Cai, Xian-Bin
    Chen, Yong-song
    DIABETOLOGY & METABOLIC SYNDROME, 2023, 15 (01)
  • [38] Dietary teasaponin ameliorates alteration of gut microbiota and cognitive decline in diet-induced obese mice
    Wang, Sen
    Huang, Xu-Feng
    Zhang, Peng
    Newell, Kelly A.
    Wang, Hongqin
    Zheng, Kuiyang
    Yu, Yinghua
    SCIENTIFIC REPORTS, 2017, 7
  • [39] Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice
    Ma, Lingyan
    Ni, Yinhua
    Wang, Zhe
    Tu, Wenqing
    Ni, Liyang
    Zhuge, Fen
    Zheng, Aqian
    Hu, Luting
    Zhao, Yufeng
    Zheng, Liujie
    Fu, Zhengwei
    GUT MICROBES, 2020, 12 (01) : 1 - 19
  • [40] Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice
    Pierre, Joseph F.
    Martinez, Kristina B.
    Ye, Honggang
    Nadimpalli, Anuradha
    Morton, Timothy C.
    Yang, Jinghui
    Wang, Qiang
    Patno, Noelle
    Chang, Eugene B.
    Yin, Deng Ping
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2016, 311 (02): : G286 - G304