An Improved Wavelet Neural Network Method for Wind Speed Forecasting

被引:5
|
作者
Yao, Chuanan [1 ]
Yu, Yongchang [1 ]
机构
[1] Henan Agr Univ, Coll Mech & Elect Engn, Zhengzhou 450002, Peoples R China
关键词
Wind Speed Forecasting; Wavelet Transform; Neural Networks; Hybrid Model; PREDICTION; POWER; PORTUGAL; DIAMETER; MODEL;
D O I
10.1166/jctn.2013.3291
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The randomness and intermittency of wind speed have a great influence on grid security, system stability and economic benefits. Wind speed forecasting plays a key role in tackling these challenges. In order to improve the prediction accuracy, a novel hybrid forecasting model is proposed, which is based on a combination of two types of traditional wavelet neural networks. The proposed hybrid model consists of two parts: the preprocessing module based on wavelet transform and the prediction module based on a kind of wavelet neural network. By wavelet transform, the preprocessing module discomposes and reconstructs an actual wind speed data into an approximation and some details. These subseries obtained are forecasted by the prediction module, respectively. The efficiency of the proposed approach has been evaluated by using four sets of season data randomly selected from a wind farm in North China. Experimental results show that the proposed method can improve the prediction precision of wind speed compared with other approaches according to the root mean squared error (RMSE) and the mean absolute percentage error (MAPE) results.
引用
收藏
页码:2860 / 2865
页数:6
相关论文
共 50 条
  • [1] Wind Speed and Wind Power Forecasting Method Based on Wavelet Packet Decomposition and Improved Elman Neural Network
    Ye R.
    Guo Z.
    Liu R.
    Liu J.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2017, 32 (21): : 103 - 111
  • [2] Wind speed forecasting based on wavelet transformation and recurrent neural network
    Pradhan, Prangya Parimita
    Subudhi, Bidyadhar
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2020, 33 (01)
  • [3] Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network
    Liu, Hui
    Mi, Xi-Wei
    Li, Yan-Fei
    ENERGY CONVERSION AND MANAGEMENT, 2018, 156 : 498 - 514
  • [4] An improved Wavelet Transform using Singular Spectrum Analysis for wind speed forecasting based on Elman Neural Network
    Yu, Chuanjin
    Li, Yongle
    Zhang, Mingjin
    ENERGY CONVERSION AND MANAGEMENT, 2017, 148 : 895 - 904
  • [5] Wind Speed and Wind Power Forecasting Using Wavelet Denoising-GMDH Neural Network
    Makhloufi, Saida
    Pillai, Gobind Gopalakrishna
    2017 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING - BOUMERDES (ICEE-B), 2017,
  • [6] Ensemble Neural Network Method for Wind Speed Forecasting
    Yong, Binbin
    Qiao, Fei
    Wang, Chen
    Shen, Jun
    Wei, Yongqiang
    Zhou, Qingguo
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS 2019), 2019, : 31 - 36
  • [7] Adaptive Wavelet Neural Network Based Wind Speed Forecasting Studies
    Chandra, D. Rakesh
    Kumari, M. Sailaja
    Sydulu, M.
    Grimaccia, F.
    Mussetta, M.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2014, 9 (06) : 1812 - 1821
  • [8] A case study on a hybrid wind speed forecasting method using BP neural network
    Guo, Zhen-hai
    Wu, Jie
    Lu, Hai-yan
    Wang, Jian-zhou
    KNOWLEDGE-BASED SYSTEMS, 2011, 24 (07) : 1048 - 1056
  • [9] Forecasting wind speed with recurrent neural networks
    Cao, Qing
    Ewing, Bradley T.
    Thompson, Mark A.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 221 (01) : 148 - 154
  • [10] Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
    Liu, Hui
    Tian, Hong-qi
    Pan, Di-fu
    Li, Yan-fei
    APPLIED ENERGY, 2013, 107 : 191 - 208