Bifurcation of limit cycles from a double homoclinic loop with a rough saddle

被引:3
作者
Han, M [1 ]
Bi, P [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
关键词
double homoclinic loop; bifurcation; limit cycle;
D O I
10.1142/S025295990400024X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns with the bifurcation of limit cycles from a double homoclinic loop under multiple parameter perturbations for general planar systems. The existence conditions of 4 homoclinic bifurcation curves and small and large limit cycles are especially investigated.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 50 条
  • [31] BIFURCATION OF LIMIT CYCLES IN A CLASS OF LIENARD SYSTEMS WITH A CUSP AND NILPOTENT SADDLE
    Zaghian, Ali
    Kazemi, Rasool
    Zangeneh, Hamid R. Z.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (03): : 95 - 106
  • [32] Continuation of limit cycles near saddle homoclinic points using splines in phase space
    K. Nandakumar
    Anindya Chatterjee
    Nonlinear Dynamics, 2009, 57 : 383 - 399
  • [33] BIFURCATION OF LIMIT CYCLES FROM A LIENARD SYSTEM WITH ASYMMETRIC FIGURE EIGHT-LOOP CASE
    Li, Hong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (3-4): : 474 - 483
  • [34] Continuation of limit cycles near saddle homoclinic points using splines in phase space
    Nandakumar, K.
    Chatterjee, Anindya
    NONLINEAR DYNAMICS, 2009, 57 (03) : 383 - 399
  • [35] Limit cycle bifurcations in a class of piecewise smooth systems with a double homoclinic loop
    Liu, Yuanyuan
    Romanovski, Valery G.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 235 - 245
  • [36] Limit Cycles Near Homoclinic and Heteroclinic Loops
    Han, Maoan
    Yang, Junmin
    Tarta, Alexandrina -Alina
    Gao, Yang
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) : 923 - 944
  • [37] Bifurcation of limit cycles from a hyper-elliptic Hamiltonian system with a double heteroclinic loops
    Xianbo Sun
    Advances in Difference Equations, 2012
  • [38] Limit Cycles Near Homoclinic and Heteroclinic Loops
    Maoan Han
    Junmin Yang
    Alexandrina–Alina Tarţa
    Yang Gao
    Journal of Dynamics and Differential Equations, 2008, 20 : 923 - 944
  • [39] Bifurcation of limit cycles from a hyper-elliptic Hamiltonian system with a double heteroclinic loops
    Sun, Xianbo
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [40] Bifurcation of limit cycles from two families of centers
    Coll, B
    Gasull, A
    Prohens, R
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2005, 12 (02): : 275 - 287