Bifurcation of limit cycles from a double homoclinic loop with a rough saddle

被引:3
|
作者
Han, M [1 ]
Bi, P [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
关键词
double homoclinic loop; bifurcation; limit cycle;
D O I
10.1142/S025295990400024X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns with the bifurcation of limit cycles from a double homoclinic loop under multiple parameter perturbations for general planar systems. The existence conditions of 4 homoclinic bifurcation curves and small and large limit cycles are especially investigated.
引用
收藏
页码:233 / 242
页数:10
相关论文
共 50 条
  • [1] BIFURCATION OF LIMIT CYCLES FROM A DOUBLE HOMOCLINIC LOOP WITH A ROUGH SADDLE
    HAN MAOAN BI PING Department of Mathematics
    Chinese Annals of Mathematics, 2004, (02) : 233 - 242
  • [2] LIMIT CYCLES NEAR A DOUBLE HOMOCLINIC LOOP
    Yang Junmin Han Maoan (Dept.of Math.
    Annals of Applied Mathematics, 2007, (04) : 536 - 545
  • [3] Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop
    Liang, Feng
    Han, Maoan
    Romanovski, Valery G.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (11) : 4355 - 4374
  • [4] On the Melnikov functions and limit cycles near a double homoclinic loop with a nilpotent saddle of order (m)over-cap
    Yang, Junmin
    Yu, Pei
    Han, Maoan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 291 : 27 - 56
  • [5] On the Number of Limit Cycles Bifurcated from Some Hamiltonian Systems with a Double Homoclinic Loop and a Heteroclinic Loop
    Moghimi, Pegah
    Asheghi, Rasoul
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (04):
  • [6] LIMIT CYCLE BIFURCATIONS NEAR A DOUBLE HOMOCLINIC LOOP WITH A NILPOTENT SADDLE
    Han, Maoan
    Yang, Junmin
    Xiao, Dongmei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (08):
  • [7] Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle of order m
    Yang, Junmin
    Yu, Pei
    Han, Maoan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 455 - 492
  • [8] Bifurcation of limit cycles from a heteroclinic loop with a cusp
    Sun, Xianbo
    Han, Maoan
    Yang, Junmin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (09) : 2948 - 2965
  • [9] General study on limit cycle bifurcation near a double homoclinic loop
    Han, Maoan
    Yang, Junmin
    Li, Jibin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 347 : 1 - 23
  • [10] On the number of limit cycles in double homoclinic bifurcations
    Han, M
    Chen, J
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (09): : 914 - 928