Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets

被引:325
作者
Fang, Xiao-Yong [1 ]
Yu, Xiao-Xia [1 ]
Zheng, Hong-Mei [1 ]
Jin, Hai-Bo [2 ]
Wang, Li [1 ]
Cao, Mao-Sheng [2 ]
机构
[1] Yanshan Univ, Sch Sci, Qinhuangdao 066004, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
关键词
Few-layer graphene; Graphene nanosheets; Electron mobility; Electrical conductivity; COMPOSITES; TRANSPORT; EFFICIENT; ELECTRODE;
D O I
10.1016/j.physleta.2015.06.063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We established a calculation model of the conductivity of multilayer graphene based on Boltzmann transport equation and 2D electron gas theory. Numerical simulations show that the conductivities of few-layer graphene and graphene nanosheets are reduced when thickness is increased. The reduction rate decreases for micron-range thicknesses and remains constant thereafter. Moreover, the conductivity increases with the increase in temperature, in which the increase rate declines as temperature increases. Higher thickness exhibits a more obvious temperature effect on conductivity. Such effect also increases with the increase in temperature. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2245 / 2251
页数:7
相关论文
共 41 条
  • [1] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [2] Multi layered Nano-Architecture of Variable Sized Graphene Nanosheets for Enhanced Supercapacitor Electrode Performance
    Biswas, Sanjib
    Drzal, Lawrence T.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (08) : 2293 - 2300
  • [3] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [4] Temperature-dependent transport in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Hone, J.
    Stormer, H. L.
    Kim, P.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [5] Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
    Castro, Eduardo V.
    Novoselov, K. S.
    Morozov, S. V.
    Peres, N. M. R.
    Dos Santos, J. M. B. Lopes
    Nilsson, Johan
    Guinea, F.
    Geim, A. K.
    Castro Neto, A. H.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [6] Intrinsic and extrinsic performance limits of graphene devices on SiO2
    Chen, Jian-Hao
    Jang, Chaun
    Xiao, Shudong
    Ishigami, Masa
    Fuhrer, Michael S.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 206 - 209
  • [7] Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis
    Cho, J.
    Luo, J. J.
    Daniel, I. M.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2007, 67 (11-12) : 2399 - 2407
  • [8] Electronic transport in two-dimensional graphene
    Das Sarma, S.
    Adam, Shaffique
    Hwang, E. H.
    Rossi, Enrico
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (02) : 407 - 470
  • [9] Nonvolatile memory devices based on few-layer graphene films
    Doh, Yong-Joo
    Yi, Gyu-Chul
    [J]. NANOTECHNOLOGY, 2010, 21 (10)
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191