Appraisal of deep-learning techniques on computer-aided lung cancer diagnosis with computed tomography screening

被引:10
作者
Agnes, S. Akila [1 ]
Anitha, J. [1 ]
机构
[1] Karunya Inst Technol & Sci, Dept CSE, Coimbatore, Tamil Nadu, India
关键词
Computer-aided diagnosis system for lung cancer; convolutional neural network; deep learning; false-positive reduction; lung segmentation; pulmonary nodule detection; FALSE-POSITIVE REDUCTION; CLASSIFICATION; NODULES; COLLEGE; NETWORK; CNNS;
D O I
10.4103/jmp.JMP_101_19
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Aims: Deep-learning methods are becoming versatile in the field of medical image analysis. The hand-operated examination of smaller nodules from computed tomography scans becomes a challenging and time-consuming task due to the limitation of human vision. A standardized computer-aided diagnosis (CAD) framework is required for rapid and accurate lung cancer diagnosis. The National Lung Screening Trial recommends routine screening with low-dose computed tomography among high-risk patients to reduce the risk of dying from lung cancer by early cancer detection. The evolvement of clinically acceptable CAD system for lung cancer diagnosis demands perfect prototypes for segmenting lung region, followed by identifying nodules with reduced false positives. Recently, deep-learning methods are increasingly adopted in medical image diagnosis applications. Subjects and Methods: In this study, a deep-learning-based CAD framework for lung cancer diagnosis with chest computed tomography (CT) images is built using dilated SegNet and convolutional neural networks (CNNs). A dilated SegNet model is employed to segment lung from chest CT images, and a CNN model with batch normalization is developed to identify the true nodules from all possible nodules. The dilated SegNet and CNN models have been trained on the sample cases taken from the LUNA16 dataset. The performance of the segmentation model is measured in terms of Dice coefficient, and the nodule classifier is evaluated with sensitivity. The discriminant ability of the features learned by a CNN classifier is further confirmed with principal component analysis. Results: Experimental results confirm that the dilated SegNet model segments the lung with an average Dice coefficient of 0.89 +/- 0.23 and the customized CNN model yields a sensitivity of 94.8 on categorizing cancerous and noncancerous nodules. Conclusions: Thus, the proposed CNN models achieve efficient lung segmentation and two-dimensional nodule patch classification in CAD system for lung cancer diagnosis with CT screening.
引用
收藏
页码:98 / 106
页数:9
相关论文
共 33 条
[1]   Automatic lung segmentation in low-dose chest CT scans using convolutional deep and wide network (CDWN) [J].
Agnes, S. Akila ;
Anitha, J. ;
Peter, J. Dinesh .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (20) :15845-15855
[2]   Lung CT Image Segmentation Using Deep Neural Networks [J].
Ait Skourt, Brahim ;
El Hassani, Abdelhamid ;
Majda, Aicha .
PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017), 2018, 127 :109-113
[3]  
American Lung, ASS OTH LUNG CANC FA
[4]  
[Anonymous], 2005, Cancer Trends, Progress Report-2005 Update
[5]  
[Anonymous], 2017, BIORXIV
[6]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[7]  
Christ Patrick Ferdinand, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P415, DOI 10.1007/978-3-319-46723-8_48
[8]   Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box [J].
Ciompi, Francesco ;
de Hoop, Bartjan ;
van Riel, Sarah J. ;
Chung, Kaman ;
Scholten, Ernst Th. ;
Oudkerk, Matthijs ;
de Jong, Pim A. ;
Prokop, Mathias ;
van Ginneken, Bram .
MEDICAL IMAGE ANALYSIS, 2015, 26 (01) :195-202
[9]   A computer-aided diagnosis system for breast DCE-MRI at high spatiotemporal resolution [J].
Dalmlş, Mehmet Ufuk ;
Gubern-Mérida, Albert ;
Vreemann, Suzan ;
Karssemeijer, Nico ;
Mann, Ritse ;
Platel, Bram .
Medical Physics, 2016, 43 (01) :84-94
[10]   Screening for Lung Cancer Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines [J].
Detterbeck, Frank C. ;
Mazzone, Peter J. ;
Naidich, David P. ;
Bach, Peter B. .
CHEST, 2013, 143 (05) :E78-E92