A system of two coupled singularly perturbed convection-diffusion ordinary differential equations is examined. The diffusion term in each equation is multiplied by a small parameter, and the equations are coupled through their convective terms. The problem does not satisfy a conventional maximum principle. Its solution is decomposed into regular and layer components. Bounds on the derivatives of these components are established that show explicitly their dependence on the small parameter. A numerical method consisting of simple upwinding and an appropriate piecewise-uniform Shishkin mesh is shown to generate numerical approximations that are essentially first order convergent, uniformly in the small parameter, to the true solution in the discrete maximum norm.