A novel endo-β-mannanase associated with anther and gene in tomato LeMAN5 is pollen development

被引:139
作者
Filichkin, SA
Leonard, JM
Monteros, A
Liu, PP
Nonogaki, H [1 ]
机构
[1] Oregon State Univ, Dept Hort, Corvallis, OR 97331 USA
[2] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA
关键词
D O I
10.1104/pp.103.035998
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Endo-beta-mannanase (EC 3.2.1.78) is involved in cell wall disassembly and the weakening of plant tissues by degrading mannan polymers in the cell walls. Endo-beta-mannanase genes are expressed in tomato (Lycopersicon. esculentum) seeds (LeMAN1 and LeMAN2) and fruits (LeMAN3 and LeMAN4). A novel endo-beta-mannanase gene (termed LeMAN5) was found in the tomato genome by genome-walking PCR and bacterial artificial chromosome library screening. The 5'-upstream region of this endo-beta-mannanase gene contained four copies of the pollen-specific cis-acting elements POLLEN1LELAT52 (AGAAA). A GUS-reporter gene driven with the putative LeMAN5 promoter (-543 to +38) was activated in anthers and pollen of transgenic Arabidopsis, with the highest beta-glucuronidase activity detected in pollen. beta-Glucuronidase expression was detected in mature pollen retained in sporangia, discharged pollen, and elongating pollen tubes in transgenic Arabidopsis. Consistently, expression of LeMAN5 mRNA and endo-beta-mannnanase activity was detected in tomato anthers and pollen. In anthers, the highest mRNA expression and endo-p-mannanase activity were detected during late stages of anther development, when pollen maturation occurred. Endo-beta-mannanase activity was present in discharged pollen, which was easily eluted in a buffer, indicating that the enzyme proteins are probably secreted from, and deposited on, the surface of pollen. These data suggest that the LeMAN5 endo-beta-mannanase is associated with anther and pollen development.
引用
收藏
页码:1080 / 1087
页数:8
相关论文
共 39 条
[1]   Endo-β-mannanase is present in an inactive form in ripening tomato fruits of the cultivar Walter [J].
Banik, M ;
Bourgault, R ;
Bewley, JD .
JOURNAL OF EXPERIMENTAL BOTANY, 2001, 52 (354) :105-111
[2]   Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements [J].
Bate, N ;
Twell, D .
PLANT MOLECULAR BIOLOGY, 1998, 37 (05) :859-869
[3]   NEW PLANT BINARY VECTORS WITH SELECTABLE MARKERS LOCATED PROXIMAL TO THE LEFT T-DNA BORDER [J].
BECKER, D ;
KEMPER, E ;
SCHELL, J ;
MASTERSON, R .
PLANT MOLECULAR BIOLOGY, 1992, 20 (06) :1195-1197
[4]  
Bewley J.D., 2013, SEEDS, DOI DOI 10.1007/978-1-4899-1002-8_1
[5]   Endo-β-mannanase activity increases in the skin and outer pericarp of tomato fruits during ripening [J].
Bewley, JD ;
Banik, M ;
Bourgault, R ;
Feurtado, JA ;
Toorop, P ;
Hilhorst, HWM .
JOURNAL OF EXPERIMENTAL BOTANY, 2000, 51 (344) :529-538
[6]   Molecular cloning of a cDNA encoding a (1->4)-beta-mannan endohydrolase from the seeds of germinated tomato (Lycopersicon esculentum) [J].
Bewley, JD ;
Burton, RA ;
Morohashi, Y ;
Fincher, GB .
PLANTA, 1997, 203 (04) :454-459
[7]   Variation in its C-terminal amino acids determines whether endo-β-mannanase is active or inactive in ripening tomato fruits of different cultivars [J].
Bourgault, R ;
Bewley, JD .
PLANT PHYSIOLOGY, 2002, 130 (03) :1254-1262
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   CHARACTERIZATION OF A GENE FAMILY ABUNDANTLY EXPRESSED IN OENOTHERA-ORGANENSIS POLLEN THAT SHOWS SEQUENCE SIMILARITY TO POLYGALACTURONASE [J].
BROWN, SM ;
CROUCH, ML .
PLANT CELL, 1990, 2 (03) :263-274
[10]   Prediction of complete gene structures in human genomic DNA [J].
Burge, C ;
Karlin, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :78-94