Well-formed, size-controlled ruthenium nanoparticles active and stable for acetic acid steam reforming

被引:35
作者
Bossola, Filippo [1 ,2 ]
Evangelisti, Claudio [2 ]
Allieta, Mattia [3 ]
Psaro, Rinaldo [2 ]
Recchia, Sandro [1 ]
Dal Santo, Vladimiro [2 ]
机构
[1] Univ Insubria, Dipartimento Sci & Alta Tecnol, I-20133 Como, Italy
[2] CNR Ist Sci & Tecnol Mol, I-20133 Milan, Italy
[3] Univ Milan, Dipartimento Chim, I-20133 Milan, Italy
关键词
Steam reforming; Acetic acid; Hydrogen; Size-controlled ruthenium nanoparticles; Magnesium aluminum mixed oxide;
D O I
10.1016/j.apcatb.2015.08.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mg(Al)O supported Ru and Rh catalysts with low loading of active metal (0.5 wt.%) were tested in the steam reforming (SR) of acetic acid (AA) to hydrogen rich mixtures. Two synthetic procedures were adopted to deposit metal nanoparticles on support material: conventional impregnation from metal chlorides aqueous solutions and size-controlled metal nanoparticles (SCMNPs) deposition method. SCMNP derived Ru catalysts showed good performances fully comparable to standard Rh based systems. After 20 h t.o.s. at reaction temperature of 700 degrees C, steam-to-carbon ratio of 3 and weight hourly space velocity of 6 h(-1), Ru catalysts showed 100% conversion and hydrogen yield higher than 70%. The presence of well formed metal nanoparticles and the residual hydrotalcite present in the support play a determinant role in limiting the deactivation by coke deposition and by nanoparticles sintering. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:599 / 611
页数:13
相关论文
共 75 条
  • [1] Laguna-Bercero M.A., J. Power Sources, 203, pp. 4-16, (2012)
  • [2] Millet P., Ngameni R., Grigoriev S.A., Mbemba N., Brisset F., Ranjbari A., Etievant C., Int. J. Hydrogen Energy, 35, pp. 5043-5052, (2010)
  • [3] Rajeshwar K., J. Appl. Electrochem., 37, pp. 765-787, (2007)
  • [4] Gallo A., Montini T., Marelli M., Minguzzi A., Gombac V., Psaro R., Fornasiero P., Dal Santo V., ChemSusChem, 5, pp. 1800-1811, (2012)
  • [5] Hochrinner H., Linde Technology, 2, pp. 16-21, (2011)
  • [6] Stas M., Kubicka D., Chudoba J., Pospisil M., Energy Fuels, 28, pp. 385-402, (2014)
  • [7] Isahak W.N.R.W., Hisham M.W.M., Yarmo M.A., Hin T.-Y., Renew. Sustain. Energy Rev., 16, pp. 5910-5923, (2012)
  • [8] Rioche C., Kulkarni S., Meunier F.C., Breen J.P., Burch R., Appl. Catal. B: Environ., 61, pp. 130-139, (2005)
  • [9] Vagia E.C., Lemonidou A.A., Appl. Catal. A: Gen., 351, pp. 111-121, (2008)
  • [10] Lemonidou A.A., Vagia E.C., Lercher J.A., ACS Catal., 3, pp. 1919-1928, (2013)