Robust detection of dynamic community structure in networks

被引:317
作者
Bassett, Danielle S. [1 ,2 ]
Porter, Mason A. [3 ,4 ]
Wymbs, Nicholas F. [5 ,6 ]
Grafton, Scott T. [5 ,6 ]
Carlson, Jean M. [1 ]
Mucha, Peter J. [7 ,8 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Sage Ctr Study Mind, Santa Barbara, CA 93106 USA
[3] Univ Oxford, Inst Math, Oxford Ctr Ind & Appl Math, Oxford OX1 3LB, England
[4] Univ Oxford, CABDyN Complex Ctr, Oxford OX1 1HP, England
[5] Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA
[6] Univ Calif Santa Barbara, UCSB Brain Imaging Ctr, Santa Barbara, CA 93106 USA
[7] Univ N Carolina, Carolina Ctr Interdisciplinary Appl Math, Dept Math, Chapel Hill, NC 27599 USA
[8] Univ N Carolina, Inst Adv Mat Nanosci & Technol, Chapel Hill, NC 27599 USA
基金
英国工程与自然科学研究理事会;
关键词
BRAIN NETWORKS; TIME-SERIES; SYNCHRONIZATION; NONLINEARITY; RECRUITMENT; MODULARITY; MODELS;
D O I
10.1063/1.4790830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe techniques for the robust detection of community structure in some classes of time-dependent networks. Specifically, we consider the use of statistical null models for facilitating the principled identification of structural modules in semi-decomposable systems. Null models play an important role both in the optimization of quality functions such as modularity and in the subsequent assessment of the statistical validity of identified community structure. We examine the sensitivity of such methods to model parameters and show how comparisons to null models can help identify system scales. By considering a large number of optimizations, we quantify the variance of network diagnostics over optimizations ("optimization variance") and over randomizations of network structure ("randomization variance"). Because the modularity quality function typically has a large number of nearly degenerate local optima for networks constructed using real data, we develop a method to construct representative partitions that uses a null model to correct for statistical noise in sets of partitions. To illustrate our results, we employ ensembles of time-dependent networks extracted from both nonlinear oscillators and empirical neuroscience data. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790830]
引用
收藏
页数:16
相关论文
共 76 条
  • [1] Chimera states for coupled oscillators
    Abrams, DM
    Strogatz, SH
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (17) : 174102 - 1
  • [2] [Anonymous], NETWORKS INTRO
  • [3] [Anonymous], THESIS U OXFORD
  • [4] [Anonymous], STATUS NETWORK STRUC
  • [5] [Anonymous], SIAM INT C DAT MIN
  • [6] [Anonymous], 2011, ARXIV09073509
  • [7] [Anonymous], MATLAB
  • [8] Constrained randomization of weighted networks
    Ansmann, Gerrit
    Lehnertz, Klaus
    [J]. PHYSICAL REVIEW E, 2011, 84 (02)
  • [9] Synchronization reveals topological scales in complex networks
    Arenas, A
    Díaz-Guilera, A
    Pérez-Vicente, CJ
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (11)
  • [10] Synchronization processes in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Perez-Vicente, Conrad J.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 224 (1-2) : 27 - 34