Factorization of a class of 2 x 2 matrix symbols by reduction to a scalar factorization

被引:0
|
作者
Bastos, M. A. [1 ]
Lopes, P. A. [1 ]
dos Santos, A. F. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Dept Math, P-1049001 Lisbon, Portugal
关键词
Riemann-Hilbert problems; factorization; integrable systems;
D O I
10.1093/imamat/hxx036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the reduction of a vector Riemann-Hilbert problem on the unit circle to a scalar problem on a contour in a Riemann surface, a factorization method for a class of symbols is described. The class of symbols involves outer functions and rational functions of the square root of a quotient of first degree polynomials. An application to a problem in the field of integrable systems of infinite dimension is presented.
引用
收藏
页码:92 / 105
页数:14
相关论文
共 24 条
  • [22] Multiple orthogonal polynomials of mixed type: Gauss-Borel factorization and the multi-component 2D Toda hierarchy
    Alvarez-Fernandez, Carlos
    Fidalgo Prieto, Ulises
    Manas, Manuel
    ADVANCES IN MATHEMATICS, 2011, 227 (04) : 1451 - 1525
  • [23] Exact conditions for preservation of the partial indices of a perturbed triangular 2 x 2 matrix function
    Adukov, Victor M.
    Mishuris, Gennady
    Rogosin, Sergei, V
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2237):
  • [24] Study of nonleptonic B(s)* → M1M2 (M = D, Ds, π, K) weak decays with factorization approach
    Chang, Qin
    Li, Pan-Pan
    Hu, Xiao-Hui
    Han, Lin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (27):