Computational analysis of non-heme iron-oxo formation by direct NO release in nitrite reduction

被引:4
|
作者
Wang, Jian [1 ,2 ]
Zhao, Yuan-yuan [3 ,5 ]
Lee, Po-Heng [2 ]
Wu, Kechen [1 ,4 ]
机构
[1] Chinese Acad Sci, State Key Lab Struct Chem, Fujian Inst Res Struct Matter, Fuzhou 350002, Fujian, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China
[3] Goethe Univ, FIAS, Ruth Moufang Str 1, D-60438 Frankfurt, Germany
[4] Minjiang Univ, Ctr Adv Marine Mat & Smart Sensors, Fuzhou 350116, Fujian, Peoples R China
[5] Technol Res Assoc, Fuel Cell Cutting Edge Res Ctr FC Cub, Koto Ku, AIST Tokyo Waterfront Main Bldg,2-3-26 Aomi, Tokyo 1350064, Japan
基金
美国国家科学基金会;
关键词
C-H HYDROXYLATION; DRINKING-WATER; COMPLEXES; NITRATE; OXIDATION; CATALYST; CYCLE; ACTIVATION; REACTIVITY; MECHANISM;
D O I
10.1039/c9cp00370c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A direct NO-releasing reaction of nitrite catalyzed by [N(afa(Cy))(3)Fe(OTf)](+) (afa (azafulvene-amine); OTf (trifluoromethanesulfonate); Cy (cyclohexyl)) was investigated using density functional theory (DFT) with D3 dispersion correction. The complex featured a secondary coordination sphere that facilitated the formation of the iron-oxo product [N(afa(Cy))(3)FeO](+) with three (Fe)OH-N hydrogen bonds. As a high-spin iron(ii), the O-binding initial intermediate Fe(O)-nitrito was thermodynamically favorable in the S = 2 state. The cleavage of the (Fe)O-NO bond was performed by a -electron shift to produce Fe(iii)-O by electron rearrangement in the S = 5/2 state. The different electron configurations are responsible for the structural properties, the valence of iron in the complexes, and the pathways of the reactions. Moreover, the two different H-bonds, (Fe)OH-N and (Fe)O-HN (by O-protonation), in the product complexes played a role in determining the reaction channels by impacting the N-H bond rotation. Thus, an exothermic sequence of conversions Fe(ii) Fe(iii)-O Fe(iii)-OH Fe(iii)-O was established for the targeted product formation. This process provided a clue to build two key intermediates, iron-oxo and iron-hydroxo, in a variety of biological and synthetic systems. The results of this study are in agreement with experimental observations and describe the roles of H-bonding in nitrite reduction catalyzed by the non-heme iron complex.
引用
收藏
页码:6643 / 6650
页数:8
相关论文
共 32 条