On solutions of the second generalization of d'Alembert's functional equation on a restricted domain

被引:2
作者
Bahyrycz, Anna [1 ]
机构
[1] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
关键词
Second generalization of d'Alembert's; functional equation; d'Alembert's functional equation; Abelian group; Restricted domain; Quadratically closed field; Lifting; SEMIGROUPS;
D O I
10.1016/j.amc.2013.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a subgroup of an abelian group (G, +) and P be a quadratically closed field with char P not equal 2. We give a full description of all pairs of functions f : G -> P, g : A -> P satisfying the equation f(x + y) + f(x - y) = 2g(x)f(y) (x,y) is an element of A x G. We present an example of solution (f, g) of (a) that cannot be extended to a solution (f, (g) over bar) of the equation f(x + y) + f(x - y) = 2 (g) over bar (x)f(y) x,y is an element of G. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:209 / 215
页数:7
相关论文
共 17 条
[1]  
Aczel J., 1989, ENCY MATH APPL, V31
[2]  
Aczel J., 1989, Topic in Mathematical Analysis, V11, P1
[3]   On solutions of the d'Alembert equation on a restricted domain [J].
Bahyrycz, Anna ;
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2013, 85 (1-2) :169-183
[4]  
DALEMBERT J, 1769, HIST ACAD SCI PARIS, P278
[5]  
DHOMBRES J, 1975, CR ACAD SCI A MATH, V280, P513
[6]  
Dhombres JG, 1978, GLAS MAT, V13(33), P39
[7]   On the construction of cosine operator functions and semigroups on function spaces with generator a(x)(d2/dx2)+b(x)(d/dx) plus c(x);: Theory [J].
Gessinger, A .
JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2001, 3 (01) :1-31
[8]  
Grza A., 1978, PUBL MATH-DEBRECEN, V25, P47
[9]  
Hewitt E., 1970, ANALYSIS ON LO CALLY, V152
[10]  
KUCZMA M, 1973, COLLOQ MATH, V28, P313