BERGMAN KERNELS OF ELEMENTARY REINHARDT DOMAINS

被引:13
作者
Chakrabarti, Debraj [1 ]
Konkel, Austin [1 ]
Mainkar, Meera [1 ]
Miller, Evan [1 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
关键词
Bergman kernel; HOLOMORPHIC-FUNCTIONS;
D O I
10.2140/pjm.2020.306.67
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Bergman kernel of certain domains in C-n, called elementary Reinhardt domains, generalizing the classical Hartogs triangle. For some elementary Reinhardt domains, we explicitly compute the kernel, which is a rational function of the coordinates. For some other such domains, we show that the kernel is not a rational function. For a general elementary Reinhardt domain, we obtain a representation of the kernel as an infinite series.
引用
收藏
页码:67 / 93
页数:27
相关论文
共 23 条
[1]   On the theory of singularity of the functions of several complex variables. The convergence problem of the regularity covers. [J].
Behnke, H ;
Thullen, P .
MATHEMATISCHE ANNALEN, 1933, 108 :91-104
[2]  
Bell SR, 2005, OPER THEORY ADV APPL, V156, P61
[4]  
Bremermann H. J., 1953, LECT FUNCT COMPL VAR, P349
[5]  
CATLIN D, 1980, J DIFFER GEOM, V15, P605
[6]   Duality and approximation of Bergman spaces [J].
Chakrabarti, D. ;
Edholm, L. D. ;
McNeal, J. D. .
ADVANCES IN MATHEMATICS, 2019, 341 :616-656
[7]   ON AN OBSERVATION OF SIBONY [J].
Chakrabarti, Debraj .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) :3451-3454
[8]   Lp MAPPING PROPERTIES OF THE BERGMAN PROJECTION ON THE HARTOGS TRIANGLE [J].
Chakrabarti, Debraj ;
Zeytuncu, Yunus E. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (04) :1643-1653
[9]   Lp regularity of the Bergman projection on domains covered by the polydisc [J].
Chen, Liwei ;
Krantz, Steven G. ;
Yuan, Yuan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (02)
[10]   The Lp boundedness of the Bergman projection for a class of bounded. Hartogs domains [J].
Chen, Liwei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) :598-610